ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Amel'chenko M. D., Bir A. S., Ogrin F. Y., Odintsov S. A., Romanenko D. V., Sadovnikov A. V., Nikitov S. A., Grishin S. V. Magnetic metasurfaces with metallic inclusions. Izvestiya VUZ. Applied Nonlinear Dynamics, 2022, vol. 30, iss. 5, pp. 563-591. DOI: 10.18500/0869-6632-003007, EDN: VFDKJY

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
Full text PDF(En):
(downloads: 81)
Article type: 
537.622, 530.182

Magnetic metasurfaces with metallic inclusions

Amel'chenko Mariya Denisovna, Saratov State University
Bir Anastasia Sergeevna, Saratov State University
Ogrin Feodor Yurevich, University of Exeter
Odintsov Sergej Aleksandrovich, Saratov State University
Romanenko Dmitrij Vladimirovich, Saratov State University
Sadovnikov Aleksandr Vladimirovich, Saratov State University
Nikitov Sergej Apollonovich, Kotel'nikov Institute of Radioengineering and Electronics of Russian Academy of Sciences
Grishin Sergej Valerevich, Saratov State University

Purpose of this paper is the development and creation of the magnetic metasurfaces with metallic inclusions operating both in the microwave and terahertz frequency ranges. Methods. The Maxwell’s equations and the expressions for the effective medium parameters are used to build the analytical models of the magnetic metasurfaces based on either a ferromagnetic (FM) or antiferromagnetic (AFM) dielectric matrix, containing a two-dimensional periodic structure of thin metal (non-magnetic) wires surrounded by insulators. Numerical simulation of such structures operating in the microwave range is carried out using the MaxLLG software package. The magnetron sputtering, liquid etching, optical lithography, and lift-off photolithography are used to create bicomponent magnetic metasurfaces, consisting of two magnetic materials with very different values of magnetization. The study of linear and nonlinear characteristics of the bicomponent magnetic metasurfaces is carried out using the methods of microwave and Brillouin spectroscopy. Results. Based on the developed analytical model of the magnetic metasurface with metallic (nonmagnetic) inclusions it is shown that the FM metasurface possesses properties of a left-handed medium in a microwave range and the AFM metasurface possesses similar properties in a terahertz range. In the last case, the material parameters of the AFM metasurface are twice negative in two frequency bands. For the magnetic metasurfaces with metallic magnetic inclusions, the formation of absorption bands in the spectrum of a traveling magnetostatic surface spin wave due to the resonant properties of the inclusions has been established. In the nonlinear regime, the effect of nonreciprocal parametric three-wave resonance was obtained. Conclusion. The results presented in the paper demonstrate a number of physical phenomena that are observed only in the magnetic metasurfaces with metallic (nonmagnetic and magnetic) inclusions. 

We would like to aknowledge Ian Wellaway, the software engineer, for technical support in installation and expluatation of MaxLGG software. The work was supported by a grant from the Russian Science Foundation, project № 19-79-20121
  1. Veselago VG. Electrodynamics of substances with simultaneously negative values ε and µ. Sov. Phys. Usp. 1968;10(4):509–514. DOI: 10.1070/PU1968v010n04ABEH003699.
  2. Pendry JB, Holden AJ, Stewart WJ, Youngs I. Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett. 1996;76(25):4773–4776. DOI: 10.1103/PhysRevLett.76.4773.
  3. Smith DR, Padilla WJ, Vier DC, Nemat-Nasser SC, Schultz S. Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 2000;84(18):4184–4187. DOI: 10.1103/PhysRevLett.84.4184.
  4. Pendry JB. Negative refraction makes a perfect lens. Phys. Rev. Lett. 2000;85(18):3966–3969. DOI: 10.1103/PhysRevLett.85.3966.
  5. Sharaevsky YP. Left-handed media: what is interesting? Izvestiya VUZ. Applied Nonlinear Dynamics. 2012;20(1):33–42 (in Russian). DOI: 10.18500/0869-6632-2012-20-1-33-42.
  6. Schurig D, Mock JJ, Justice BJ, Cummer SA, Pendry JB, Starr AF, Smith DR. Metamaterial electromagnetic cloak at microwave frequencies. Science. 2006;314(5801):977–980. DOI: 10.1126/ science.1133628.
  7. Soukoulis CM, Wegener M. Past achievements and future challenges in the development of three dimensional photonic metamaterials. Nature Photonics. 2011;5(9):523–530. DOI: 10.1038/nphoton. 2011.154.
  8. Kildishev AV, Boltasseva A, Shalaev VM. Planar photonics with metasurfaces. Science. 2013; 339(6125):1232009. DOI: 10.1126/science.1232009.
  9. Glybovski SB, Tretyakov SA, Belov PA, Kivshar YS, Simovski CR. Metasurfaces: From microwaves to visible. Physics Reports. 2016;634:1–72. DOI: 10.1016/j.physrep.2016.04.004.
  10. Chen HT, Taylor AJ, Yu N. A review of metasurfaces: physics and applications. Rep. Prog. Phys. 2016;79(7):076401. DOI: 10.1088/0034-4885/79/7/076401.
  11. Remnev MA, Klimov VV. Metasurfaces: a new look at Maxwell’s equations and new ways to control light. Phys. Usp. 2018;61(2):157–190. DOI: 10.3367/UFNe.2017.08.038192.
  12. Bespyatykh YI, Bugaev AS, Dikshtein IE. Surface polaritons in composite media with time dispersion of permittivity and permeability. Physics of the Solid State. 2001;43(11):2130–2135. DOI: 10.1134/1.1417193.
  13. Vashkovskii AV, Lokk EH. Negative refractive index for a surface magnetostatic wave propagating through the boundary between a ferrite and ferrite-insulator-metal media. Phys. Usp. 2004;47(6): 601–605. DOI: 10.1070/PU2004v047n06ABEH001793.
  14. Dewar G. Minimization of losses in a structure having a negative index of refraction. New J. Phys. 2005;7:161. DOI: 10.1088/1367-2630/7/1/161.
  15. He Y, He P, Yoon SD, Parimi PV, Rachford FJ, Harris VG, Vittoria C. Tunable negative index metamaterial using yttrium iron garnet. J. Magn. Magn. Mater. 2007;313(1):187–191. DOI: 10.1016/j.jmmm.2006.12.031.
  16. Zhao H, Zhou J, Zhao Q, Li B, Kang L, Bai Y. Magnetotunable left-handed material consisting of yttrium iron garnet slab and metallic wires. Appl. Phys. Lett. 2007;91(13):131107. DOI: 10.1063/ 1.2790500.
  17. Bi K, Zhou J, Zhao H, Liu X, Lan C. Tunable dual-band negative refractive index in ferrite-based metamaterials. Opt. Express. 2013;21(9):10746–10752. DOI: 10.1364/OE.21.010746.
  18. Rachford FJ, Armstead DN, Harris VG, Vittoria C. Simulations of ferrite-dielectric-wire composite negative index materials. Phys.Rev. Lett. 2007;99(5):057202.DOI: 10.1103/PhysRevLett.99.057202.
  19. Gurevich AG. Ferrite in Microwaves. Moscow: Fizmatgiz; 1960. 407 p. (in Russian).
  20. Huang YJ, Wen GJ, Li TQ, Li JLW, Xie K. Design and characterization of tunable terahertz metamaterials with broad bandwidth and low loss. IEEE AWP Letters. 2012;11:264–267. DOI: 10.1109/LAWP.2012.2189090.
  21. Grishin SV, Amel’chenko MD, Sharaevskii YP, Nikitov SA. Double negative media based on antiferromagnetic metamaterials Tech. Phys. Lett. 2021;47(18):32–35 (in Russian). DOI: 10.21883/ PJTF.2021.18.51470.18873.
  22. Evtikhov MG, Nikitov SA. Semigroup method for calculation of the spectra of photonic, phononic, and magnonic crystals. J. Commun. Technol. Electron. 2008;53(3):241–255. DOI: 10.1134/ S1064226908030017.
  23. Melkov GA, Koblyanskiy YV, Slipets RA, Talalaevskij AV, Slavin AN. Nonlinear interactions of spin waves with parametric pumping in permalloy metal films. Phys. Rev. B. 2009;79(13):134411. DOI: 10.1103/PhysRevB.79.134411.
  24. Nikitov SA, Tailhades P, Tsai CS. Spin waves in periodic magnetic structures–magnonic crystals. J. Magn. Magn. Mater. 2001;236(3):320–330. DOI: 10.1016/S0304-8853(01)00470-X.
  25. Kruglyak VV, Demokritov SO, Grundler D. Magnonics. J. Phys. D: Appl. Phys. 2010;43(26):264001. DOI: 10.1088/0022-3727/43/26/264001.
  26. Serga AA, Chumak AV, Hillebrands B. YIG magnonics. J. Phys. D: Appl. Phys. 2010;43(26):264002. DOI: 10.1088/0022-3727/43/26/264002.
  27. Gubbiotti G, Tacchi S, Madami M, Carlotti G, Adeyeye AO, Kostylev M. Brillouin light scattering studies of planar metallic magnonic crystals. J. Phys. D: Appl. Phys. 2010;43(26):264003. DOI: 10.1088/0022-3727/43/26/264003.
  28. Yu H, Chen J, Cros V, Bortolotti P, Wang H, Guo C, Brandl F, Heimbach F, Han X, Anane A, Grundler D. Active ferromagnetic metasurface with topologically protected spin texture for spectral filters. Adv. Funct. Mater. 2022;32(34):2203466. DOI: 10.1002/adfm.202203466. 
  29. Popov PA, Sharaevskaya AY, Beginin EN, Sadovnikov AV, Stognij AI, Kalyabin DV, Nikitov SA. Spin wave propagation in three-dimensional magnonic crystals and coupled structures. J. Magn. Magn. Mater. 2019;476:423–427. DOI: 10.1016/j.jmmm.2018.12.008.
  30. Khitun A, Bao M, Wang KL. Magnonic logic circuits. J. Phys. D: Appl. Phys. 2010;43(26):264005. DOI: 10.1088/0022-3727/43/26/264005.
  31. Zakeri K. Magnonic crystals: towards terahertz frequencies. J. Phys. Condens. Matter. 2020;32(36): 363001. DOI: 10.1088/1361-648X/ab88f2.
  32. Wang ZK, Zhang VL, Lim HS, Ng SC, Kuok MH, Jain S, Adeyeye AO. Observation of frequency band gaps in a one-dimensional nanostructured magnonic crystal. Appl. Phys. Lett. 2009;94(8):083112. DOI: 10.1063/1.3089839.
  33. Sokolovskyy ML, Krawczyk M. The magnetostatic modes in planar one-dimensional magnonic crystals with nanoscale sizes. J. Nanopart. Res. 2011;13(11):6085–6091. DOI: 10.1007/s11051- 011-0303-5.
  34. Zhang VL, Lim HS, Lin CS, Wang ZK, Ng SC, Kuok MH, Jain S, Adeyeye AO, Cottam MG. Ferromagnetic and antiferromagnetic spin-wave dispersions in a dipole-exchange coupled bi-component magnonic crystal. Appl. Phys. Lett. 2011;99(14):143118. DOI: 10.1063/1.3647952.
  35. Duerr G, Madami M, Neusser S, Tacchi S, Gubbiotti G, Carlotti G, Grundler D. Spatial control of spin-wave modes in Ni80Fe20 antidot lattices by embedded Co nanodisks. Appl. Phys. Lett. 2011;99(20):202502. DOI: 10.1063/1.3662841.
  36. Tacchi S, Duerr G, Klos JW, Madami M, Neusser S, Gubbiotti G, Carlotti G, Krawczyk M, Grundler D. Forbidden band gaps in the spin-wave spectrum of a two-dimensional bicomponent magnonic crystal. Phys. Rev. Lett. 2012;109(13):137202. DOI: 10.1103/PhysRevLett.109.137202.
  37. Gubbiotti G, Tacchi S, Madami M, Carlotti G, Jain S, Adeyeye AO, Kostylev MP. Collective spin waves in a bicomponent two-dimensional magnonic crystal. Appl. Phys. Lett. 2012;100(16):162407. DOI: 10.1063/1.4704659.
  38. Zivieri R. Bandgaps and demagnetizing effects in a Py/Co magnonic crystal. IEEE Trans. Magn. 2014;50(11):1100304. DOI: 10.1109/TMAG.2014.2324174.
  39. Malago P, Giovannini L, Zivieri R, Gruszecki P, Krawczyk M. Spin-wave dynamics in permalloy/cobalt magnonic crystals in the presence of a nonmagnetic spacer. Phys. Rev. B. 2015;92(6): 064416. DOI: 10.1103/PhysRevB.92.064416.
  40. Gubbiotti G, Tacchi S, Madami M, Carlotti G, Yang Z, Ding J, Adeyeye AO, Kostylev M. Collective spin excitations in bicomponent magnonic crystals consisting of bilayer permalloy/Fe nanowires. Phys. Rev. B. 2016;93(18):184411. DOI: 10.1103/PhysRevB.93.184411.
  41. Vysotskii SL, Khivintsev YV, Sakharov VK, Novitskii NN, Dudko GM, Stognii AI, Filimonov YA. Surface magnetostatic waves in yttrium–iron garnet with the surface subwave metastructure of a permalloy film. Physics of the Solid State. 2020;62(9):1659–1663. DOI: 10.1134/ S1063783420090334.
  42. Lazcano-Ortiz Z, Ordonez-Romero CL, Domınguez-Juarez JL, Monsivais G, Quintero-Torres R, Matatagui D, Fragoso-Mora JR, Qureshi N, Kolokoltsev O. Magnonic crystal with strips of magnetic nanoparticles: Modeling and experimental realization via a dip-coating technique. Magnetochemistry. 2021;7(12):155. DOI: 10.3390/magnetochemistry7120155.
  43. L’vov VS. Nonlinear Spin Waves. Moscow: Nauka; 1987. 272 p. (in Russian).
  44. Ustinov AB, Grigor’eva NY, Kalinikos BA. Observation of spin-wave envelope solitons in periodic magnetic film structures. JETP Lett. 2008;88(1):31–35. DOI: 10.1134/S0021364008130079.
  45. Drozdovskii AV, Cherkasskii MA, Ustinov AB, Kovshikov NG, Kalinikos BA. Formation of envelope solitons of spin-wave packets propagating in thin-film magnon crystals. JETP Lett. 2010;91(1):16–20. DOI: 10.1134/S0021364010010042.
  46. Sheshukova SE, Morozova MA, Beginin EN, Sharaevskii YP, Nikitov SA. Formation of gap solitons in a finite magnonic crystal. Phys. Wave Phen. 2013;21(4):304–309. DOI: 10.3103/ S1541308X13040134.
  47. Grishin SV, Moskalenko OI, Pavlov AN, Romanenko DV, Sadovnikov AV, Sharaevskii YP, Sysoev IV, Medvedeva TM, Seleznev EP, Nikitov SA. Space-quasiperiodic and time-chaotic parametric patterns in a magnonic quasicrystal active ring resonator. Phys. Rev. Appl. 2021;16(5): 054029. DOI: 10.1103/PhysRevApplied.16.054029.
  48. Kivshar YS, Agrawal GP. Optical Solitons: From Fibers to Photonic Crystals. New York: Academic Press; 2003. 540 p. DOI: 10.1016/B978-0-12-410590-4.X5000-1.
  49. Gurevich AG, Melkov GA. Magnetization Oscillations and Waves. Boca Raton: CRC Press; 1996. 464 p.
  50. Mednikov AM. Nonlinear effects at surface spin wave propagation in the YIG films. Soviet Physics, Solid State. 1981;23(1):242–245 (in Russian).
  51. Temiryazev AG. Mechanism of surface magnetostatic wave frequency conversion under three-magnon decay conditions. Soviet Physics, Solid State. 1987;29(2):313–319 (in Russian).
  52. Melkov GA, Sholom SV. Parametric excitation of spin waves by a surface magnetostatic wave. Sov. Phys. JETP. 1989;69(2):403–407.
  53. Vashkovskii AV, Stal’makhov VS, Sharaevskii YP. Magnetostatic Waves in Microwave Electronics. Saratov: Saratov University Publishing; 1993. 312 p. (in Russian).
  54. Kozhevnikov AV, Dudko GM, Khivintsev YV, Sakharov VK, Vysotskii SL, Nikulin YV, Pavlov ES, Khitun AG, Filimonov YA. Magnetic field direction influence on the spectrum of spin waves output signals at three-magnon decay of magnetostatic surface waves in a cross based on waveguides of yttrium iron garnet film. Izvestiya VUZ. Applied Nonlinear Dynamics. 2020;28(2):168–185 (in Russian). DOI: 10.18500/0869-6632-2020-28-2-168-185.
  55. Dewar G. Applicability of ferrimagnetic hosts to nanostructured negative index of refraction (left-handed) materials. In: Proc. SPIE. Vol. 4806. Complex Mediums III: Beyond Linear Isotropic Dielectrics, 24 June 2002, Seattle, WA, United States. Washington, US: SPIE; 2002. P. 156–166. DOI: 10.1117/12.472980.
  56. Amel’chenko MD, Grishin SV, Sharaevskii YP. Fast and slow electromagnetic waves in a longitudinally magnetized thin-film ferromagnetic metamaterial. Tech. Phys. Lett. 2019;45(12): 1182–1186. DOI: 10.1134/S1063785019120022.
  57. Sharaevskaya AY, Kalyabin DV, Beginin EN, Fetisov YK, Nikitov SA. Surface spin waves in coupled easy-axis antiferromagnetic films. J. Magn. Magn. Mater. 2019;475:778–781. DOI: 10.1016/j.jmmm.2018.11.130.
  58. Belov PA, Marques R, Maslovski SI, Nefedov IS, Silveirinha M, Simovski CR, Tretyakov SA. Strong spatial dispersion in wire media in the very large wavelength limit. Phys. Rev. B. 2003;67(11):113103. DOI: 10.1103/PhysRevB.67.113103.
  59. High Frequency Magnetics Software [Electronic resource]. Devon, UK: MaxLLG, Innovation Centre, University of Exeter; 2019. Available from:
  60. Aziz MM. Sub-nanosecond electromagnetic-micromagnetic dynamic simulations using the finite-difference time-domain method. Progress In Electromagnetics Research B. 2009;15(15):1–29. DOI: 10.2528/PIERB09042304.
  61. Sadovnikov AV, Rozhnev AG. Electrodynamical characteristicsof periodic ferromagnetic structures. Izvestiya VUZ. Applied Nonlinear Dynamics. 2012;20(1):143–159 (in Russian). DOI: 10.18500/ 0869-6632-2012-20-1-143-159.
  62. Vansteenkiste A, Leliaert J, Dvornik M, Helsen M, Garcia-Sanchez F, Van Waeyenberge B. The design and verification of MuMax3. AIP Advances. 2014;4(10):107133. DOI: 10.1063/1.4899186.