ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Baljakin A. A., Blohina E. V. Peculiarities of calculation of the Lyapunov exponents set in distributed sele-oscillated sistems with delayed feedback. Izvestiya VUZ. Applied Nonlinear Dynamics, 2008, vol. 16, iss. 2, pp. 87-110. DOI: 10.18500/0869-6632-2008-16-2-87-110

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 268)
Article type: 
517.9, 621.385.6

Peculiarities of calculation of the Lyapunov exponents set in distributed sele-oscillated sistems with delayed feedback

Baljakin Artem Aleksandrovich, Saratov State University
Blohina Elena Vladimirovna, Saratov State University

The numerical scheme for calculation the set of Lyapunov exponents in distributed systems with delayed feedback based on a modification of Benettine algorithm is described. The results of numerical simulation of two such systems (active oscillator with cubic nonlinearity and active oscillator of klystron type) are presented. The sets of Lyapunov exponents in different regimes, particularly in regimes of «weak» and «developed» chaos are analyzed. The calculation peculiarities of the set of Lyapunov exponents in the systems with delayed feedback are discussed.

Key words: 
  1. Kuznetsov SP. Dynamic Chaos. Moscow: Fizmatlit; 2001. 296 p. (in Russian).
  2. Ott E. Chaos in Dynamical Systems. NY: Cambridge Univ. Press; 1993. 385 p. DOI: 10.1017/CBO9780511803260.
  3. Schuster HG. Deterministic Chaos. Wiley; 1995. 320 p.
  4. Landa PS. Nonlinear Oscillations and Waves in Dynamical Systems. Dordrecht: Springer; 1996. 544 p. DOI: 10.1007/978-94-015-8763-1.
  5. Trubetskov DI, Anfinogentov VG, Ryskin NM, Titov VN, Khramov AE. Complex dynamics of microwave electronic devices (nonlinear nonstationary theory from the standpoint of nonlinear dynamics). Radio Engineering. 1999;63(4):61–68 (in Russian).
  6. Airila MI, Dumbrajs O, Reinfelds A, Strautins U. Nonstationary oscillations in gyrotrons. Physics of Plasmas. 2001;8(3):4608–4612. DOI: 10.1063/1.1402173.
  7. Ginzburg NS, Zaitsev NI, Ilyakov EV, Kulagin IS, Novozhilova YV, Rozenthal RM, and Sergeev AS. Observation of chaotic dynamics in a powerful backward-wave oscillator. Phys. Rev. Lett. 2002;89(10):108304. DOI: 10.1103/physrevlett.89.108304.
  8. Rozental RM, Zaitsev NI, Kulagin IS et al. Nonstationary processes in an X-band relativistic gyrotron with delayed feedback. IEEE Transaction on Plasma Science. 2004;32(2):418–421. DOI: 10.1109/TPS.2004.829831.
  9. Rozental RM, Zaitsev NI, Kulagin IS et al. Nonstationary processes in an X-band relativistic gyrotron with delayed feedback. IEEE Transaction on Plasma Science. 2004;32(2):418–421. DOI: 10.1109/TPS.2004.829831.
  10. Shigaev AM, Dmitriev BS, Zharkov DV, Ryskin NM. Chaotic dynamics of delayed feedback klystron oscillator and its control by external signal. IEEE Transaction on Electron Devices. 2005;52(5):790–797. DOI: 10.1109/TED.2005.845839.
  11. Bezruchko BP, Bulgakova LV, Kuznetsov SP, Trubetskov DI. Stochastic self-oscillations and instability in a backward-wave tube. Radio Engineering and Electronic Physics. 1983;28(6):1136–1139 (in Russian).
  12. Anfinogentov VG. Chaotic oscillations in an electron beam with a virtual cathode. Izvestiya VUZ. Applied Nonlinear Dynamics. 1994;2(5):69–83 (in Russian).
  13. Farmer JD. Chaotic attractors of an infinite-dimensional dynamical system. Physica D. 1982;4(3):366–393. DOI: 10.1016/0167-2789(82)90042-2.
  14. Cenys A, Tamasevicius A, Mykolaitis G, Blumeliene S. Coupled VHF delay line chaos generators. In: Proceedings of the first international workshop on the noise radar technology (NRTW-2002). Yalta, Ukraine, September 18-20, 2002. P. 136.
  15. Kuznetsov SP, Trubetskov DI. Chaos and hyperchaos in a backward-wave oscillator. Radiophysics and Quantum Electronics. 2004;47(5–6):341–355. DOI: 10.1023/
  16. Dronov V, Hendry MR, Antonsen TM, and Ott E. Communication with a chaotic traveling wave tube microwave generator. Chaos. 2004;14(1):30–37. DOI: 10.1063/1.1622352.
  17. Blokhina EV, Rozhnev AG. Chaos and hyperchaos in a gyrotron. Radiophysics and Quantum Electronics. 2006;49(10):799–810. DOI: 10.1007/s11141-006-0115-0.
  18. Blokhina EV, Kuznetsov SP, Rozhnev AG. High-dimensional chaotic attractors in a gyrotron with nonfixed field structure. Tech. Phys. Lett. 2006;32(4):364–368. DOI: 10.1134/S1063785006040274.
  19. Blokhina EV, Kuznetsov SP, Rozhnev AG. High-dimensional chaos in a gyrotron. IEEE Transaction on Electron Devices. 2007;54(2):188–193. DOI: 10.1109/TED.2006.888757.
  20. Ott E, Hunt BR, Szunyogh I, Zimin AV, Kostelich EJ, Corazza M, Kalnay E, Patil DJ, Yorke JA. A local ensemble Kalman filter for atmospheric data assimilation. arXiv: 0203058. arXiv Preprint; 2002.
  21. Kuznetsov AP, Kuznetsov SP, Ryskin NM. Nonlinear Oscillations. Moscow: Fizmatlit; 2005. 292 p. (in Russian).
  22. Baljakin AA, Ryskin NM. Peculiarities of calculation of the Lyapunov exponents set in distributed self-oscillated systems with delayed feedback. Izvestiya VUZ. Applied Nonlinear Dynamics. 2007;15(6):3–21 (in Russian). DOI: 10.18500/0869-6632-2007-15-6-3-21.
  23. Ryskin NM, Shigaev AM. Complex dynamics of a simple distributed self-oscillatory model system with delay. Tech. Phys. 2002;47(7):795–802. DOI: 10.1134/1.1495037.
  24. El’sgol’ts LE, Norkin SB. Introduction to the Theory and Application of Differential Equations with Deviating Arguments. 356 p.
  25. Dmitrieva TV, Ryskin NM, Shigaev AM. Complex dynamics of simple models of distributed self-oscillating delayed feedback systems. Nonlinear Phenomena in Complex Systems. 2001;4(4):376–382.
  26. Dmitrieva TV, Ryskin NM, Titov VN, Shigaev AM. Complex dynamics of simple models of distributed electron-wave systems. Izvestiya VUZ. Applied Nonlinear Dynamics. 1999;7(6):66–82 (in Russian).
  27. Kuznetsov SP. Complex dynamics of oscillators with delayed feedback (review). Radiophysics and Quantum Electronics. 1982;25(10):996–1009. DOI: 10.1007/BF01037379.
  28. Kuznetsov SP, Mosekilde E. Coupled map lattices with complex order parameter. Physica A. 2001;291(3–4):299–316. DOI: 10.1016/S0378-4371(00)00506-9.
  29. Ginzburg NS, Zavol'skii NA, Nusinovich GS, Sergeev AS. Self-oscillation in uhf generators with diffraction radiation output. Radiophysics and Quantum Electronics. 1986;29(1):89–97. DOI: 10.1007/BF01034008.
  30. Rozhnev AG. Boundary conditions in the theory of microwave electron devices with a diffraction energy output. J. Comm. Techn. Elect. 2000;45(Suppl. 1):S95–S101.
  31. Blokhina EV, Rozhnev AG. The influence of reflections from an output horn on gyrotron dynamics. Journal of Communications Technology and Electronics. 2004;49(11):1301–1307.
  32. Rozanov NN. Optical Bistability and Hysteresis in Distributed Nonlinear Systems. Moscow: Fizmatlit; 1997. 336 p. (in Russian).
  33. Balyakin AA, Ryskin NM, Khavroshin OS. Nonlinear dynamics of modulation instability in distributed resonators under external harmonic driving. Radiophysics and Quantum Electronics. 2207;50(9):726–744. DOI: 10.1007/s11141-007-0064-2.
  34. Balyakin AA, Ryskin NM. A change in the character of modulation instability in the vicinity of a critical frequency. Tech. Phys. Lett. 2004;30(3):175–177. DOI: 10.1134/1.1707158.
  35. Balyakin AA, Blokhina EV. High-dimensional chaotic regimes in distributed radiophysical systems operating near the cutoff frequency. PIERS Proceedings. Prague, Czech Republic, August 27-30, 2007. P. 507–511.
  36. Balyakin AA, Blokhina EV. Features of calculating the spectrum of Lyapunov exponents in distributed systems. In: Abstracts of the International Congress «Nonlinear Dynamic Analysis – 2007». St. Petersburg, 4-8 June 2007. St. Petersburg: SPbU; 2007. P. 362 (in Russian).
Short text (in English):
(downloads: 50)