ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Lazarevich I. A. Radial patterns in a vibrated granular layer. Izvestiya VUZ. Applied Nonlinear Dynamics, 2010, vol. 18, iss. 6, pp. 159-164. DOI: 10.18500/0869-6632-2010-18-6-159-164

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 148)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
538.913:534-18:53.091

Radial patterns in a vibrated granular layer

Autors: 
Lazarevich Ivan Aleksandrovich, Lobachevsky State University of Nizhny Novgorod
Abstract: 

Laboratory experiments were conducted for a sand layer placed in the verticallyoscillated containers of various shapes. Radial patterns on the sand surface were observed; experimental investigations of such structures have never been described in scientific literature. The waveform, amplitude and frequency of vibrations and the depth of the vibrated layer could be varied, allowing study the dependence of the shape and scale of radial structures upon these parameters.

Reference: 
  1. Jaeger HM, Nagel SR, Behringer RP. Granular solids, liquids, and gases. Rev. Mod. Phys. 1996;68(4):1259–1273. DOI: 10.1103/RevModPhys.68.1259.
  2. Knight JB, Jaeger HM, Nagel SR. Vibration-induced size separation in granular media: The convection connection. Phys. Rev. Lett. 1993;70(24):3728–3731. DOI: 10.1103/PhysRevLett.70.3728.
  3. Goldhirsh I, Zanetti G. Clustering instability in dissipative gases. Phys. Rev. Lett. 1993;70(11):1619-1622. DOI: 10.1103/PhysRevLett.70.1619; Du Y, Hao L, Kadanoff LP. Breakdown of hydrodynamics in a one-dimensional system of inelastic particles. Phys. Rev. Lett. 1995;74(8):1268–1271. DOI: 10.1103/PhysRevLett.74.1268.
  4. Umbanhowar P, Melo F, Swinney HL. Localized excitations in a vertically vibrated granular layer. Nature (London). 1996;382:793–796. DOI: 10.1038/382793a0.
  5. Bizon C, Shattuck MD, Swift JB, McCormick WD, Swinney HL. Patterns in 3D vertically oscillated granular layers: Simulation and experiment. Phys. Rev. Lett. 1998;80(1):57–60. DOI: 10.1103/PhysRevLett.80.57.
  6. Clement E, Vanel L, Rajchenbach J, Duran J. Pattern formation in a vibrated two-dimensional granular layer. Phys. Rev. E. 1996;53(3):2972–2975. DOI: 10.1103/physreve.53.2972.
  7. Shinbrot T. Competition between randomizing impacts and inelastic collisions in granular pattern formation. Nature (London). 1997;389:574–576. DOI: 10.1038/39264.
  8. Tsimring LS, Aranson IS. Localized and cellular Patterns in a vibrated granular layer. Phys. Rev. Lett. 1997;79(2):213–216. DOI: 10.1103/PhysRevLett.79.213.
  9. Crawford C, Riecke H. Oscillon-type structures and their interaction in a Swift-Hohenberg model. Physica D. 1999;129:83–92. DOI: 10.1016/S0167-2789(98)00280-2.
  10. Risto GH, Herrmann HJ. Density patterns in two-dimensional hoppers. Phys. Rev. E. 1994;50(1):R5–R8. DOI: 10.1103/physreve.50.r5.
  11. Aoki KM, Akiyama T. Spontaneous wave pattern formation in vibrated granular materials. Phys. Rev. Lett. 1996;77(20):4166–4169. DOI: 10.1103/PhysRevLett.77.4166.
  12. Rossing TD. Chladni’s law for vibrating plates. American Journal of Physics. 1982;50:271-274. DOI: 10.1119/1.12866.
Received: 
23.08.2010
Accepted: 
03.11.2010
Published: 
31.01.2011
Short text (in English):
(downloads: 79)