ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Hromova I. A., Melnikov L. A. The eigenwaves of the anisotropic photonic crystals: the calculation method and its features, the symmetry of the dispersion surface of the 2D crystal. Izvestiya VUZ. Applied Nonlinear Dynamics, 2008, vol. 16, iss. 1, pp. 81-98. DOI: 10.18500/0869-6632-2008-16-1-81-98

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 171)
Language: 
Russian
Article type: 
Article
UDC: 
537.876.23:537.877:621.372.8

The eigenwaves of the anisotropic photonic crystals: the calculation method and its features, the symmetry of the dispersion surface of the 2D crystal

Autors: 
Hromova Irina Anatolevna, Saratov State University
Melnikov Leonid Arkadevich, Yuri Gagarin State Technical University of Saratov
Abstract: 

Fully vectorial plane wave method is presented aimed the calculation of the electromagnetic eigenwaves in periodical dielectric media having arbitrary geometry and dimension with both isotropic and anisotropic elements. Using this method the effect of the reorientation of molecules of anisotropic material in photonic crystal on the dispersion surface is investigated. 

Key words: 
Reference: 
  1. Joannopoulos JD, Villeneuve PR and Fan S. Photonic crystals: putting a new twist on light. Nature. 1997;386(6621):143–149. DOI: 10.1038/386143a0.
  2. Ho KM, Chan CT, and Soukoulis CM. Existence of a photonic gap in periodic dielectric structures. Phys. Rev. Lett. 1990;65(25):3152–3155. DOI: 10.1103/PhysRevLett.65.3152.
  3. Larsen TT. Optical devices based on liquid crystal photonic bandgap fibers. Optics Express. 2003;11(20):2589–2596. DOI: 10.1364/OE.11.002589.
  4. Alkeskjold TT. All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers. Optics Express. 2004;12(24):5857–5871. DOI: 10.1364/OPEX.12.005857.
  5. Du F, Lu YQ, and Wu ST. Electrically tunable liquid-crystal photonic crystal fiber. Applied Physics Letters. 2004;85(12):2181–2183. DOI: 10.1063/1.1796533.
  6. Kotynski R et al. Modeling of polarization behaviour of LC filled photonic crystal fibers. In: Proceedings Symposium IEEE/LEOS Benelux Chapter, 315-319, Dec. 2004, Ghent, Belgium.
  7. Scolari L. Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers. Optics Express. 2005;13(19):7483–7496. DOI: 10.1364/OPEX.13.007483.
  8. Seydou F et al. Numerical computation of the Green’s function for two-dimensional finite-size photonic crystals of infinite length. Optics Express. 2006;14(23):11362–11371. DOI: 10.1364/OE.14.011362.
  9. Busch K et al. The Wannier function approach to photonic crystal circuits. Journal of Physics: Condensed Matter. 2003;15(30):R1233. DOI: 10.1088/0953-8984/15/30/201.
  10. Johnson SG, Joannopoulos JD. Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis. Optics Express. 2001;8(3):173–190. DOI: 10.1364/OE.8.000173.
  11. Guo S, Albin S. Simple plane wave implementation for photonic crystal calculations. Optics Express. 2003;11(2):167–175. DOI: 10.1364/OE.11.000167.
  12. Lokke M et al. Group-theoretical description of the triangular air-silica photonic crystal out-of-plane propagation. Optics Express. 2004;12(25):6299–6312. DOI: 10.1364/OPEX.12.006299.
  13. Melnikov L, Khromova I, Sherbakov A, Nikishin N. Soft-glass hollow core photonic crystal fibers. Proc. SPIE. 2005;5950:595012. DOI: 10.1117/12.623163.
  14. Hsue YC, Yang TJ. A novel view of plane wave expansion method in photonic crystals [Electronic resource]. arXiv 0307150. arXiv Preprint; 2003. Available from: http://arxiv.org/abs/physics/0307150.
  15. Kotynski R. Photonic crystal fibers with material anisotropy. Optical and Quantum Electronics. 2005;37(1–3):253–264. DOI: 10.1007/s11082-005-1166-8.
  16. Sun J, Chan CC. Effect of liquid crystal alignment on bandgap formation in photonic bandgap fibers. Optics Letters. 2007;32(14):1989–1991. DOI: 10.1364/OL.32.001989.
  17. Couny F, Benabid F and Light PS. Large-pitch kagome-structured hollow-core photonic crystal fiber. Optics Letters. 2006;31(24):3574–3576. DOI: 10.1364/OL.31.003574.
  18. Khromova IA, Melnikov LA. Liquid crystal infiltrated photonic bandgap fibers: dispersion and mode characteristics calculation. In: Technical Digest of Conference «LOYS-2006», ThS7-03. Saint Petersburg; 2006. P. 99.
  19. Khromova IA, Melnikov LA. Dispersion Properties of photonic crystals and photonic band gap fibers with anisotropic elements. In: Proceedings of 13th Student Seminar on Microwave Applications of Novel Physical Phenomena. Saint Petersburg; 2006. P. 38–40.
Received: 
27.12.2007
Accepted: 
27.12.2007
Published: 
29.02.2008
Short text (in English):
(downloads: 58)