ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


Cite this article as:

Podlazov A. V. Two-dimensional self-organized critical sandpile models with anisotropic dynamics of the activity propagation. Izvestiya VUZ. Applied Nonlinear Dynamics, 2012, vol. 20, iss. 6, pp. 25-46. DOI: https://doi.org/10.18500/0869-6632-2012-20-6-25-46

Language: 
Russian

Two-dimensional self-organized critical sandpile models with anisotropic dynamics of the activity propagation

Abstract: 

We numerically and analytically investigate two self-organized critical sandpile models with anisotropic dynamics of the activity propagation – Dhar–Ramaswamy and discrete Feder–Feder models. The full set of critical indices for these models is theoretically determined. We also give systematical statement of the finite-size scaling ansatz and of its use for the solving of self-organized critical systems. Studying the discrete Feder–Feder model we find and explain a number of nontrivial phenomena, such as spontaneous anisotropy, anomalous diffusion and the appearance of midline ditch of filling.

DOI: 
10.18500/0869-6632-2012-20-6-25-46
References: 

1. Bak P., Tang C., Wiesenfeld K. Self-organized criticality: An explanation of 1/f-noise // Phys. Rev. Lett. 1987. Vol. 59, № 4. P. 381. 2. Bak P., Tang C., Wiesenfeld K. Self-organized criticality // Phys. Rev. A. 1988. Vol. 38, № 1. P. 364. 3. Ivashkevich E.V. Critical behavior of the sandpile model as a self-organizing branching process// Phys. Rev. Lett. 1996. Vol. 76, № 18. P. 3368. 4. Dhar D., Ramaswamy R. Exactly solved model of self-organized critical phenomena// Phys. Rev. Lett. 1989. Vol. 63, № 16. P. 1659. 5. Christensen K., Olami Z. Sandpile models with and without an underlying spatial structure// Phys. Rev. E. 1993. Vol. 48, № 5. P. 3361. 6. Dhar D., Majumdar S.N. Abelian sandpile model on the Bethe lattice // J. Phys. A: Math. Gen. 1990. Vol. 23. P. 4333. 7. Ма Ш. Современная теория критических явлений. М.: Мир, 1980. 298 с. 8. Manna S.S. Two-state model of self-organized criticality// L. Phys. A: Math. Gen. 1991. Vol. 24. P. L363. 9. Подлазов А.В. Двумерная самоорганизованно-критическая модель Манна. М.: ИПМ им. М.В. Келдыша, 2012. Препринт № 42. 20 с. http://library.keldysh.ru/preprint.asp?id=2012-42 10. Подлазов А.В. Сравнение двумерных изотропных консервативных самоорганизованно-критических моделей типа кучи песка. М.: ИПМ им. М.В. Келдыша, 2012. Препринт № 43. http://library.keldysh.ru/preprint.asp?id=2012-43 11. Малинецкий Г.Г., Подлазов А.В. Сравнение двумерных изотропных консервативных самоорганизованно-критических моделей типа кучи песка// Вестник МГТУ им. Н.Э. Баумана. Естественные науки. 2012. Спец. выпуск № 2 «Математическое моделирование в технике». C. 119. 12. Kadanoff L.P., Nagel S.R., Wu L., Zhou S. Scaling and universality in avalanches// Phys. Rev. A. 1989. Vol. 39, № 12. P. 6524. 13. Bak P. How nature works: The science of self-organized criticality. Springer-Verlag, New York, Inc. 1996. 14. Sornette D., Johansen A., Dornic I. Mapping self-organized criticality onto criticality // J. Phys. I (France). 1995. Vol. 5. P. 325. 15. Clar S., Drossel B., Schwabl F. Forest fires and other examples of self-organized criticality// J. Phys.: Cond. Mat. 1996. Vol. 8. P. 6803. 16. Feder H.J.S., Feder J. Self-organized criticality in a stick-slip process// Phys. Rev. Lett. 1991. Vol. 66, № 20. P. 2669.

Short text (in English):
(downloads: 13)
Full text:
(downloads: 1)