ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


backward-wave oscillator

Nonlinear dynamics of the backward-wave oscillator as the origin of nonstationary microwave electronics

Aim. This article presents a review of the non-stationary nonlinear phenomena in backward-wave oscillators (BWO). Methods. Numerical modeling using the nonstationary (time-domain) 1-D, 2-D, and 2-D nonlinear theory of electron beam interaction with a backward electromagnetic wave in the slowly varying amplitude approximation. Results. Main results of nonstationary nonlinear theory of O-type and M-type BWO are presented.

Influence both of reflections and dissipation in the backward-wave oscillator on first resonance peak of amplitude at the transient beginning

In the present work an effort to analyze dissipation and the wave reflection influence on the first resonant pulse in the time dependence of the output signal of the BWO has been taken.

Study of miniaturized low-voltage backward-wave oscillator with a planar slow-wave structure

The development of the terahertz frequency range is one of the priority problems of modern vacuum microwave electronics. For increasing power and efficiency of such devices, it is favorable to use spatially developed slow-wave structures (SWSs) and electron beams with a large cross section. For miniaturization of vacuum-tube devices, reducing of the accelerating voltage becomes a problem of principal importance. In this respect, planar SWSs on dielectric substrates are very promising.