ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


Electromagnetic waves

Spin-wave diagnostics of epitaxial ferrite-dielectric structures

Purpose of this study is to elucidate the mechanism of transformation of electromagnetic and exchange spin waves (ESW) in a thin transition layer of epitaxial ferrite–dielectric structures, as well as to investigate the possibilities of using short-wave ESW to diagnose magnetic inhomogeneities of epitaxial yttrium-iron garnet (YIG) films. Methods. In this paper, we study the hybridization processes of electromagnetic and exchange spin waves that occur in the transition layer of the YIG film.

Radiative processes, radiation instability and chaos in the radiation formed by relativistic beams moving in three-dimensional (two-dimensional) space-periodic structures (natural and photonic crystals)

We review the results of studies of spontaneous and stimulated emission of relativistic particles in natural and photonic crystals. We consider the diffraction of electromagnetic waves in a crystal, and the resonance and parametric (quasi-Cherenkov) X-ray radiation, the radiation in the channeling of relativistic particles in crystals, diffraction radiation in conditions of channeling, diffraction radiation of a relativistic oscillator, induced radiation in multidimensional space-periodic resonators (natural or artificial (electromagnetic, photonic) crystals).

Wave equations for the pockels effect description in crystals and their analysis on the example of lithium niobate

Theoretical description of the Pockels effect is offered in which statement of a problem in the form of Maxwell equations allows to go on to wave equations directly and to find their solutions. Analytical expressions determining phase velocities and polarization of the optical plane waves, propagating in crystal of lithium niobate in principal crystallographic directions, for different cases of influence of an exterior static electric field are gained.