ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Glyavin M. Y., Zavolsky N. A., Zapevalov V. E., Zaslavsky V. Y., Lescheva K. A., Rozental R. M., Sedov A. S. The influence of the azimuthal inhomogeneity of electron beam–microwave interaction on the operation regime of subterahertz gyrotrons. Izvestiya VUZ. Applied Nonlinear Dynamics, 2015, vol. 23, iss. 2, pp. 108-118. DOI: 10.18500/0869-6632-2015-23-2-108-118

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 188)
Language: 
Russian
Article type: 
Article
UDC: 
621.385.69

The influence of the azimuthal inhomogeneity of electron beam–microwave interaction on the operation regime of subterahertz gyrotrons

Autors: 
Glyavin Mihail Yu., Institute of Applied Physics of the Russian Academy of Sciences
Zavolsky Nikolaj Aleksandrovich, Samara State University
Zapevalov Vladimir Evgenevich, Institute of Applied Physics of the Russian Academy of Sciences
Zaslavsky Vladislav Yurevich, Institute of Applied Physics of the Russian Academy of Sciences
Lescheva Ksenija Aleksandrovna, Lobachevsky State University of Nizhny Novgorod
Rozental Roman Markovich, Institute of Applied Physics of the Russian Academy of Sciences
Sedov Anton Sergeevich, Institute of Applied Physics of the Russian Academy of Sciences
Abstract: 

The investigation of operation regimes of CW/263 GHz/1kW gyrotron, developed at IAP RAS/GYCOM Ltd., was made by various numerical methods. The influence of the azimuthal inhomogeneity (such as electron beam radial misalignments and tilt) has been studied. The method of average equations and 3D PIC codes (CST Studio Suite and KARAT) were used. Results, achieved by different methods, are in agreement with experimental data. It is shown, that for feasible values of asymmetry, relative efficiency reduction can reach 40% from initial value. The possibility of future three-dimensional analysis of THz band gyrotrons with overside cavities and simultaneous azimuthal asymmetry of the electron beam and electrodynamics system by PIC codes has been demonstrated. 

Reference: 
  1. Glyavin M.Yu., Luchinin A.G., Bogdashov A.A., Manuilov V.N., Morozkin M.V.,Kashin D., Rodin Yu.V., Denisov G.G., Rogers G., Romero-Talamas C.A., Pu R., Shkvarunetz A.G., Nusinovich G.S. Experimental investigation of the pulsed terahertz gyrotron with record-breaking power and efficiency parameters // Radiophysics and Quantum Electronics. 2013. Vol. 56, № 8-9. P. 550.
  2. Glyavin M.Yu., Luchinin A.G. A terahertz gyrotron with pulsed magnetic field // Radiophysics and Quantum Electronics. 2007. Vol.50, № 10-11. P.755.
  3. Dumbrajs O. Eccentricity of the electron beam in a gyrotron cavity // Int. J. of Infrared and MM Waves. 1994. Vol. 15, № 7. P. 1255.
  4. Venediktov N.P. , Dubrov V.V., Zapevalov V.E., Kornishin S.Yu., Kotov A.V., Kuftin A.N., Malygin O.V., Sedov A.S., Fiks A.Sh., Tsalolikhin V.I. Experimental study of a continuous-wave high-stability second-harmonic gyrotron for spectroscopy of dynamically polarized nuclei // Radiophysics and Quantum Electronics. 2010. Vol. 53, № 4. P. 237.
  5. Zavol’skiy N.A., Zapevalov V.E., Moiseev M.A., Sedov A.S. Influence of the axial misalignment of the electron beam and the cavity on the gyrotron parameters // Radiophysics and Quantum Electronics. 2011. Vol. 54, № 6. P. 402.
  6. Nusinovich G.S., Vlasov A.N., Botton M., Antonsen T.M., Cauffman S. Effect of the azimuthal inhomogeneity of electron emission on gyrotron operation // Phys. Plasmas. 2001. Vol. 8, № 7. 3473
  7. Nusinovich G.S., Sinitsyn O.V., Antonsen T.M. Mode switching in a gyrotron with azimuthally corrugated resonator // Phys. Rev. Lett. 2007. Vol. 98. 205101.
  8. Dumbrajs O., Nusinovich G.S. Effect of electron beam misalignments on the gyrotron efficiency // Phys. Plasmas. 2013. Vol. 20. 073105.
  9. Khutoryan E.M., Dumbrajs O., Nusinovich G.S., Idehara T. Theoretical study of the effect of electron beam misalignment on operation of the gyrotron FU IV A // IEEE Trans. on Plasma Science. 2014. Vol. 42, № 6. 1586.
  10. Ginzburg N.S., Nusinovich G.S., Zavolsky N.A. Theory of nonstationary processes in gyrotrons with low-Q resonators // Int. J. Electron. 1986. Vol. 61, № 6. 881.
  11. Glyavin M.Yu., Chirkov A.V., Denisov G.G., Fokin A.P., Kholoptsev V.V., Kuftin A.N., Luchinin A.G., Golubyatnikov G.Yu., Malygin V.I., Morozkin M.V., Manuilov V.N., Proyavin M.D., Sedov A.S., Sokolov E.V., Tai E.M., Tsvetkov A.I., Zapevalov V.E. Experimental tests of 263 GHz gyrotron for spectroscopy applications and diagnostic of various media // Rev. Sci. Instr. 2015. 86(5). 054705.
  12. www.jastec-inc.com/e_products_cryogen/index.html
  13. Chirkov A.V., Denisov G.G., Kuftin A.N., Zapevalov V.E., Malygin V.I., Moiseev M.A., Kornishin S.Yu. Multifrequency gyrotron with high-efficiency synthesized waveguide converter // Technical Physics Letters. 2007. Vol. 33, issue 4. P. 350.
  14. https://www.cst.com/Products/CSTS2
  15. Tarakanov V.P. Universal’nii elektromagnitnii kod KARAT// Matematicheskoye modelirovaniye. Problemy i rezul’taty / Pod red. O.M. Belotserkovskogo. M.: Nauka, 2003. 477 s. (in Russian).
  16. Zaslavsky V.Yu., Ginzburg N.S., Glyavin M.Yu., Zheleznov I.V., Zotova I.V. Threedimensional particle-in-cell modeling of terahertz gyrotrons with cylindrical and planar configurations of the interaction space // Phys. Plasmas. 2013. Vol. 20. 043103.
  17. Tarakanov V.P. Teoreticheskiy i chislennyy analiz nelineynykh zadach fiziki plazmy posredstvom koda KARAT. Diss. d.f.-m.n. M., 2011 (in Russian). http://test.vak.ed.gov.ru/common//img/uploaded/files/TarakanovVP. pdf
  18. Zaitsev N.I., Ginzburg N.S., Zavolsky N.A., Zapevalov V.E., Ilyakov E.V., Kulagin I.S., Kuftin A.N., Lygin V.K., Moiseev M.A., Novozhilova Yu.V., Rozental R.M., Tsalolikhin V.I. Highly efficient relativistic SHF gyrotron with a microsecond pulse width // Technical Physics Letters. 2001. Vol.27, № 4. P.266.
  19. Ginzburg N.S., Zaitsev N.I., Ilyakov E.V., Kulagin I.S., Rosenthal R.M. Self-modulated generation observed in a delayed feedback relativistic gyrotron // Tech. Phys. Lett. 2002. Vol.28, № 5. P.395.
  20. Nusinovich G.S., Erm R.E. // Elektronnaya Tekhnica. Ser.1. Elektronica SVCh. 1972. Vol. 8. S.55 (in Russian).
  21. Moiseev M.A., Nusinovich G.S. Concerning the theory of multimode oscillation in a gyromonotron // Radiophysics and Quantum Electronics. 1974. Vol.17, № 11. P.1305.
  22. Zapevalov V.E., Kornishin S.Yu., Kotov A.V., Kuftin A.N., Malygin O.V., Manuilov V.N., Sedov A.S., Tsalolikhin V.I. System for the formation of an electron beam in a 258 GHz gyrotron designed for experiments on dynamic polarization of nuclei // Radiophysics and Quantum Electronics. 2010. Vol. 53, № 4. P. 229.
  23. Semenov E.S., Plankin O.P., Rozental R.M. Razvitiye metodov analiza elektronnoopticheskikh sistem girotronov s narusheniyami azimutal’noy simmetrii // Izvestiya vuzov. Prikladnaya nelineynaya dinamika. 2015. T. 23, № 3 (in Russian, in print).
  24. Malygin A.S., Pagonakis I.G., Piosczyk B., Kern S., Weggen J., Thumm M., Jelonnek J., Avramides K.A., Ives R.L., Marsden D., Collins G. Design and 3-D simulations of a 10-kW/28-GHz gyrotron with a segmented emitter based on controlled porosityreservoir cathodes // IEEE Trans. Plasma Sci. 2013. Vol. 41, №10. P. 2717.
Received: 
20.04.2015
Accepted: 
20.04.2015
Published: 
31.07.2015
Short text (in English):
(downloads: 130)