ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Postnov D. E., Shishkin A. V., Sherbakov P. A. Nonlinear effects in ensembles of oscillators with resource distribution coupling. Part 1: Dynamical regimes of blood flow autoregulation in vascular nephron tree. Izvestiya VUZ. Applied Nonlinear Dynamics, 2007, vol. 15, iss. 5, pp. 3-22. DOI: 10.18500/0869-6632-2007-15-5-3-22

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 199)
Language: 
Russian
Article type: 
Article
UDC: 
530.182:577.3

Nonlinear effects in ensembles of oscillators with resource distribution coupling. Part 1: Dynamical regimes of blood flow autoregulation in vascular nephron tree

Autors: 
Postnov Dmitry E, Saratov State University
Shishkin Aleksandr Vladislavovich, Saratov State University
Sherbakov Pavel Aleksandrovich, Saratov State University
Abstract: 

We study the typical oscillatory regimes and nonlinear affects related to the specific but widely distributed in nature type of coupling. Namely the interaction in an ensemble of oscillators occurs due to the consumption and distribution of some energy-related resource. Such systems manifest the number of specific features. In the first part of our work we show that the detailed model of kidney blood flow autoregulation delivers such resource sharing system that belongs to such class and investigate its typical regimes.

Key words: 
Reference: 
  1. Winfree T. The geometry of biological time. 2nd ed. New York: Springer; 2001.
  2. Strogatz SH. Sync: the emerging science of spontaneous order. New York: Hyperion; 2003.
  3. Pikovsky A, Rosenblum M, Kurths J. Synchronization: А universal concept in nonlinear science. Cambridge: Cambridge University Press; 2001.
  4. Afraimovich VS, Nekorkin VI. Chaos of traveling waves in a discrete chain of diffusively coupled maps. Int. J. Bifurcation and Chaos. Appl. Sci. Eng. 1994;4:631–637. DOI: 10.1142/S0218127494000459.
  5. Kuramoto Y. Chemical oscillations, waves and turbulence. Berlin: Springer; 1984.
  6. Kaneko K. Globally coupled circle maps. Physica D. 1991;54:5–19.
  7. Meda P, Atwater I, Goncalves A, Bangham A, Orci L, Rojas E. The topography of electrical synchrony among beta-cells in the mouse islet of Langerhans. Q. J. Exp. Psychol. 1984;69:719–735.
  8. Kiss Z, Zhai Y, Hudson JL. Emerging coherence in a population of chemical oscillators. Science. 2002;296:1676–1678. DOI: 10.1126/science.1070757.
  9. Dano S, Hynne F, De Monte S, d’Ovidio F, Sorensen PG, Westerhoff H. Synchronization of glycolytic oscillations in a yeast cell population. Faraday Discuss. 2001;120:261–276. DOI: 10.1039/b103238k.
  10. Watts J. Small Worlds: The dynamics of networks between order and randomnes. Princeton: Princeton University Press; 1999.
  11. Mathias N, Gopal V. Small worlds: How and why. Phys. Rev. E. 2001;63:021117. DOI: 10.1103/PhysRevE.63.021117.
  12. Mosekilde E, Maistrenko Y, Postnov D. Chaotic synchronization. Application to living systems, World Scientific; 2002.
  13. Holstein-Rathlou NH, Leyssac PP. TGF-mediated oscillations in the proximal intratubular pressure: Differences between spontaneously hypertensive rats and Wistar-Kyoto rats. Acta Physiol. Scand. 1986;126:333–339. DOI: 10.1111/j.1748-1716.1986.tb07824.x.
  14. Jensen KS, Mosekilde E, Holstein-Rathlou NH. Self-sustained oscillations and chaotic behavior in kidney pressure regulation. Mondes Develop. 1986;54-55:91–109.
  15. Holstein-Rathlou NH, Marsh DJ. A dynamic model of the tubuloglomerular feedback mechanism. Am. J. Physiol. 1990;258:F1448–F1459. DOI: 10.1152/ajprenal.1990.258.5.F1448.
  16. Barfred M, Mosekilde E, Holstein-Rathlou NH. Bifurcation analysis of nephron pressure and flow regulation. Chaos. 1996;6:280–287. DOI: 10.1063/1.166175.
  17. Holstein-Rathlou NH, Marsh DJ. A dynamic model of renal blood flow autoregulation. Bull. Math. Biol. 1994;56:441–429. DOI: 10.1007/BF02460465.
  18. Young DK, Marsh DJ. Pulse wave propagation in rat renal tubules: Implications for GFR autoregulation. Am. J. Physiol. 1981;240:F446–F458. DOI: 10.1152/ajprenal.1981.240.5.F446.
  19. Marsh DJ, Sosnovtseva OV, Chon KH, Holstein-Rathlou NH. Nonlinear interactions in renal blood flow regulation. Am. J. Physiol. 2005;288:R1143–R1159. DOI: 10.1152/ajpregu.00539.2004.
  20. Oien AH, Aukland K. A multinephron model of renal blood flow autoregulation by tubuloglomerular feedback and myogenic response. Acta Physiol. Scand. 1991;143:71–92. DOI: 10.1111/j.1748-1716.1991.tb09203.x.
  21. Holstein-Rathlou NH, Leyssac PP. TGF-mediated oscillations in the proximal intratubular pressure: Differences between spontaneously hypertensive rats and Wistar-Kyoto rats. Acta Physiol. Scand. 1986;126:333–339. DOI: 10.1111/j.1748-1716.1986.tb07824.x.
  22. Holstein-Rathlou NH, Marsh DJ. Oscillations of tubular pressure, flow and distal chloride concentration in rats. Am. J. Physiol. 1989;256:F1007–F1014. DOI: 10.1152/ajprenal.1989.256.6.F1007.
  23. Yip KP, Holstein-Rathlou NH, Marsh DJ. Chaos in blood flow control in genetic and renovascular hypertensive rats. Am. J. Physiol. 1991;261:F400–F408. DOI: 10.1152/ajprenal.1991.261.3.F400.
  24. Holstein-Rathlou NH, Marsh DJ. A dynamic model of renal blood flow autoregulation. Bulletin of Mathematical Biology. 1994;563:411–429. DOI: 10.1007/BF02460465.
  25. Casellas D, Dupont M, Bouriquet N, Moore LC, Artuso A, Mimran A. Anatomic pairing of afferent arterioles and renin cell distribution in rat kidneys. Am. J. Physiol. 1994;267:F931–F936. DOI: 10.1152/ajprenal.1994.267.6.F931.
  26. Postnov DE, Sosnovtseva OV, Mosekilde E. Oscillator clustering in resource distribution chain. Chaos. 2005;15:13704. DOI: 10.1063/1.1852151.
Received: 
12.05.2006
Accepted: 
15.05.2007
Published: 
30.11.2007
Short text (in English):
(downloads: 63)