ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Smirnov D. A. Revealing nonlinear couplings between stochastic oscillators from time series. Izvestiya VUZ. Applied Nonlinear Dynamics, 2010, vol. 18, iss. 2, pp. 16-38. DOI: 10.18500/0869-6632-2010-18-2-16-38

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 167)
Language: 
Russian
Article type: 
Article
UDC: 
530.18

Revealing nonlinear couplings between stochastic oscillators from time series

Autors: 
Smirnov Dmitrij Alekseevich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Abstract: 

The problem of detection and quantitative characterization of nonlinear directional couplings between stochastic oscillators is considered. Coupling characteristics and a technique for their estimation from time series are suggested. An analytic expression for a statistical significance level of the conclusion about coupling presence is derived that allows a reliable inference from relatively short signals. Performance of the approach is demonstrated in numerical experiments with diverse individual properties of oscillators and different kinds of coupling functions.

Reference: 
  1. Pikovsky A, Rosenblum M, Kurts Yu. Synchronization: A fundamental nonlinear phenomenon. Moscow: Tehnosphera; 2003. 493 p.
  2. Tass PA. Phase resetting in medicine and biology – stochastic modelling and data analysis. Berlin: Springer; 1999.
  3. Boccaletti S, Kurths J, Osipov G, Valladares D, Zhou C. The synchronization of chaotic systems. Phys. Rep. 2002;366:1–101. DOI: 10.1016/S0370-1573(02)00137-0.
  4. Mosekilde E, Maistrenko Yu, Postnov D. Chaotic Synchronization. Applications to Living Systems. Singapore: World Scientific; 2002. 404 p. DOI: 10.1142/4845.
  5. Balanov A, Janson N, Postnov D, Sosnovtseva O. Synchronization: From Simple to Complex. Berlin: Springer-Verlag; 2008.
  6. Rosenblum MG, Pikovsky AS. Detecting direction of coupling in interacting oscillators. Phys. Rev. E. 2001;64:045202. DOI: 10.1103/PhysRevE.64.045202.
  7. Smirnov DA, Bezruchko BP. Estimation of interaction strength and direction from short and noisy time series. Phys. Rev. E. 2003;68:046209. DOI: 10.1103/PhysRevE.68.046209.
  8. Palus M, Stefanovska A. Direction of coupling from phases of interacting oscillators: An information-theoretic approach. Phys. Rev. E. 2003;67:055201. DOI: 10.1103/PhysRevE.67.055201.
  9. Kralemann B, Cimponeriu L, Rosenblum M, Pikovsky A, Mrowka R. Uncovering interaction of coupled oscillators from data. Phys. Rev. E. 2007;76:055201. DOI: 10.1103/PhysRevE.76.055201.
  10. Kralemann B, Cimponeriu L, Rosenblum M, Pikovsky A, Mrowka R. Phase dynamics of coupled oscillators reconstructed from data. Phys. Rev. E. 2008;77:066205. DOI: 10.1103/PhysRevE.77.066205.
  11. Baccala LA, Sameshima K. Partial directed coherence: a new concept in neural structure determination. Biological Cybernetics. 2001;84:463–474. DOI: 10.1007/PL00007990.
  12. Ancona N, Marinazzo D, Stramaglia S. Radial basis function approach to nonlinear Granger causality of time series. Phys. Rev. E. 2004;70:056221. DOI: 10.1103/PhysRevE.70.056221.
  13. Schreiber T. Measuring information transfer. Phys. Rev. Lett. 2000;85:461–464. DOI: 10.1103/PhysRevLett.85.461.
  14. Verdes PF. Assessing causality from multivariate time series. Phys. Rev. E. 2005;72:026222. DOI: 10.1103/PhysRevE.72.026222.
  15. Hlavackova-Schindler K, Palus M, Vejmelka M, Bhattacharya J. Causality detection based on information-theoretic approaches in time series analysis. Phys. Rep. 2007;441(1):1–46. DOI: 10.1016/j.physrep.2006.12.004.
  16. Vejmelka M, Palus M. Inferring the directionality of coupling with conditional mutual information. Phys. Rev. E. 2008;77:026214. DOI: 10.1103/PhysRevE.77.026214.
  17. Rosenblum MG, Cimponeriu L, Bezerianos A, Patzak A, Mrowka R. Identification of coupling direction: Application to cardiorespiratory interaction. Phys. Rev. E. 2002;65:041909. DOI: 10.1103/PhysRevE.65.041909.
  18. Prokhorov MD, Ponomarenko VI, Gridnev VI, Bodrov MB, Bespyatov AB. Synchronization between main rhythmic processes in the human cardiovascular system. Phys. Rev. E. 2003;68:041913. DOI: 10.1103/PhysRevE.68.041913.
  19. Luchinsky DG, Millonas MM, Smelyanskiy VN, Pershakova A, Stefanovska A, McClintock PV. Nonlinear statistical modeling and model discovery for cardiorespiratory data. Phys. Rev. E. 2005;72:021905. DOI: 10.1103/PhysRevE.72.021905.
  20. Hramov AE, Koronovskii AA, Ponomarenko VI, Prokhorov MD. Detection of synchronization from univariate data using wavelet transform. Phys. Rev. E. 2007;75:056207. DOI: 10.1103/PhysRevE.75.056207.
  21. Sosnovtseva OV, Pavlolv AN, Mosekilde E, Holstein-Rathlou NH, Marsh DJ. Double-wavelet approach to study frequency and amplitude modulation in renal autoregulation. Phys. Rev. E. 2004;70:031915. DOI: 10.1103/PhysRevE.70.031915.
  22. Pavlov AN, Sosnovtseva OV, Pavlova ON, Mosekilde E, Holstein-Rathlou NH. Characterizing multimode interaction in renal autoregulation. Physiological Measurements. 2008;29:945–958. DOI: 10.1088/0967-3334/29/8/007.
  23. Eguia MC, Rabinovich MI, Abarbanel HD. Information transmission and recovery in neural communications channels. Phys. Rev. E. 2000;62:7111–7122. DOI: 10.1103/physreve.62.7111.
  24. Kiemel T, Gormley K, Guan L, Williams T, Cohen A. Estimating the strength and direction of functional coupling in the lamprey spinal cord. J. Computational Neuroscience. 2003;15:233–245. DOI: 10.1023/a:1025868910179.
  25. Blinowska KJ, Kus R, Kaminski M. Granger causality and information flow in multivariate processes. Phys. Rev. E. 2004;70:050902. DOI: 10.1103/PhysRevE.70.050902.
  26. Pereda E, Quiroga RQ, Bhattacharya J. Nonlinear multivariate analysis of neurophysiological signals. Progress in Neurobiology. 2005;77:1–37. DOI: 10.1016/j.pneurobio.2005.10.003.
  27. Brea J, Russell DF, Neiman AB. Measuring direction in the coupling of biological oscillators: a case study for electroreceptors of paddlefish. Chaos. 2006;16:026111. DOI: 10.1063/1.2201466.
  28. Schelter B, Winterhalder M, Eichler M, Peifer M, Hellwig B, Guschlbauer B, Luecking C, Dahlhaus R, Timmer J. Testing for directed influences among neural signals using partial directed coherence. J. Neurosci. Methods. 2005;152:210–219. DOI: 10.1016/j.jneumeth.2005.09.001.
  29. Wang S, Chen Y, Ding M, Feng J, Stein JF, Aziz TZ, Liu XJ. Revealing the dynamic causal interdependence between neural and muscular signals in Parkinsonian tremor. J. Franklin Institute. 2007;344(3-4):180–195. DOI: 10.1016/j.jfranklin.2006.06.003.
  30. Osterhage H, Mormann F, Wagner T, Lehnertz K. Measuring the directionality of coupling: Phase versus state space dynamics and application to EEG time series. Int. J. Neural Syst. 2007;17(3):139–148. DOI: 10.1142/S0129065707001019.
  31. Smirnov DA, Barnikol UB, Barnikol TT, Bezruchko BP, Hauptmann C, Buehrle C, Maarouf M, Sturm V, Freund HJ, Tass PA. The generation of Parkinsonian tremor as revealed by directional coupling analysis. Europhys. Lett. 2008;83(2):20003. DOI: 10.1209/0295-5075/83/20003.
  32. Mokhov II, Smirnov DA. El Nino Southern Oscillation drives North Atlantic Oscillation as revealed with nonlinear techniques from climatic indices. Geophysical Research Letters. 2006;33(3):L03708. DOI: 10.1029/2005GL024557.
  33. Smirnov DA, Bezruchko BP. Detection of couplings in ensembles of stochastic oscillators. Phys. Rev. E. 2009;79:046204. DOI: 10.1103/PhysRevE.79.046204.
  34. Kori H, Kuramoto Y. Slow switching in globally coupled oscillators: robustness and occurrence through delayed coupling. Phys. Rev. E. 2001;63:046214. DOI: 10.1103/PhysRevE.63.046214.
  35. Kuramoto Y. Chemical Oscillations, Waves and Turbulence. Berlin: Springer-Verlag; 1984. DOI: 10.1007/978-3-642-69689-3
  36. Pikovsky AS, Rosenblum MG, Kurths J. Phase synchronization in regular and chaotic systems. Int. J. Bifurc. Chaos. 2000;10(10):2291–2305. DOI: 10.1142/S0218127400001481.
  37. Gabor D. Theory of communication. London: J. Inst. Elect. Eng. 1946;93:429–457.
  38. Rosenblum MG, Pikovsky AS, Kurths J, Schaefer C, Tass PA. Phase synchronization: from theory to data analysis. Neuro-informatics. Handbook of Biological Physics. Ed. by Moss F, Gielen S. New York: Elsevier Science. 2001;4:279–321.
  39. Kendall MC, Stuart A. The advanced theory of statistics. New York: Hafner; 1979.
  40. Nikitin NN, Razevig VD. Methods for the digital simulation of stochastic differential equations and an estimate of their errors. U.S.S.R. Comput. Math. Math. Phys. 1978;18(1):102–113.
  41. Anishchenko VS, Vadivasova TE, Okrokvertskhov GA, Strelkova GI. Statistical properties of dynamical chaos. Phys. Usp. 2005;48(2):151–166.
  42. Thompson JMT, Stewart HB. Nonlinear Dynamics and Chaos. New York: Wiley; 1987.
  43. Morris C, Lecar H. Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 1981;35:193–213. DOI: 10.1016/S0006-3495(81)84782-0.
  44. Izhikevich EM. Neural excitability, spiking and bursting. Int. J. Bifurc. Chaos. 2000;10(6):1171–1266. DOI: 10.1142/S0218127400000840.
  45. Ermentrout GB, Kopell N. Oscillator death in systems of coupled neural oscillators. SIAM J. Appl. Math. 1990;50(1):125–146. DOI10.1137/0150009.
  46. Smirnov D, Schelter B, Winterhalder M, Timmer J. Revealing direction of coupling between neuronal oscillators from time series: Phase dynamics modeling versus partial directed coherence. Chaos. 2007;17(1):013111. DOI: 10.1063/1.2430639.
Received: 
29.09.2009
Accepted: 
03.03.2010
Published: 
30.04.2010
Short text (in English):
(downloads: 73)