For citation:
Bliokh K. Y., Usatenko O. V. Two-scale geometric resonance: from parametric resonance in oscillator to thermodynamic cycles. Izvestiya VUZ. Applied Nonlinear Dynamics, 2001, vol. 9, iss. 2, pp. 92-111. DOI: 10.18500/0869-6632-2001-9-2-92-111
Two-scale geometric resonance: from parametric resonance in oscillator to thermodynamic cycles
Influence of two-scale variations of parameters on the behavior of different dynamic systems is considered. Parametric instability is discovered under these conditions. We call it «two-scale geometric resonance». It can be described with the help of certain geometric structures оп the extended phase space. Two-scale geomefric resonance possesses similar properties and it is described in similar ways in seemingly absolutely different systems. General models are presented in the paper for the two-scale geometric resonance description and specific examples are considered: classical oscillator, Van der Pol oscillator and thermodynamic system with ideal gas.
- Arnold VI. Mathematical methods of classical mechanics. Moscow: Nauka; 1989. 472 p.
- Cole J. Methods of perturbations in applied mathematics. Moscow: Mir; 1972. 274 p.
- Vinitsky SI, Derbov VL, Dubovik BM, Markowski BL, Stepanovsky YP. Topological phases in quantum mechanics and polarization optics. Phys. Usp. 1990;160:6.
- Bliokh KY. The appearance оf а geometric-type instability in dynamic systems with adiabatically varying parameters. J. Phys. A: Math. Gen. 1999;32:2551–2565. DOI: 10.1088/0305-4470/32/13/007.
- Bliokh KY. Geometric amplitude, adiabatic invariants, quantization, and strong stability of Hamiltonian systems. J. Phys. A: Math. Gen. 2001;43(1):25-42. DOI:10.1063/1.1418718.
- Mishchenko EF, Rozov NKh. Differential Equations with Small Parameter and Relaxation Fluctuations. Moscow: Nauka; 1975. 248 p.
- Bakay AC, Stepanovsky YP. Adiabatic Invariants. Kiev: Naukova Dumka, 1981. 284 p.
- Panovko YaG. Introduction to the Theory of Mechanical Fluctuations. Moscow: Nauka; 1980. 408 p.
- Kronig R dе L, Penney WG. Quantum mechanics of electrons in crystal lattices. Proc. Roy. Soc. А. 1931;103:499–513. DOI: 10.1098/rspa.1931.0019.
- Albeverio C, Gestesi F, Heeg-Kron R, Holden H. Solvable Models in Quantum Mechanics. Moscow: Mir; 1991. 568 p.
- Seeger K. Physics of Semiconductors. Moscow: Mir; 1977. 616 p.
- Brillouin L, Parodi M. Propagation of Waves in Periodic Structures. Moscow: Foreign Literature Publishing House; 1959. 457 p.
- Born M, Wolf E. Fundamentals of Optics. Moscow: Nauka; 1970. 856 p.
- Elashi S. Waves in active and passive periodic structures. TIIER. 1976;64:12-22.
- Bell M. A note оn Mathieu functions. Proceedings оf the Glasgow Mathematical Association. 1957;3:132. DOI: 10.1017/S204061850003358X.
- Landau LD, Livshits EM. Theoretical Mechanics. Moscow: Nauka; 1965. 216 p.
- Bass FG, Bulgakov AA, Tetervov AP. High-frequency Properties of Semiconductors with Superlattices. Moscow: Nauka; 1989. 288 p.
- Anderson PW. Absence оf diffusion in certain random lattices. Phys. Rev. 1958;109:1492. DOI: 10.1103/PhysRev.109.1492.
- Zaiman J. Models of Disorder. Moscow: Mir; 1982. 180 p.
- Pastur LA, Figotin AL. Random and Almost Periodic Self-conjugate Operators. Moscow: Nauka; 1991. 336 p.
- Van Kampen NG. Stochastic Processes in Physics and Chemistry. Moscow: Vysshaya shkola; 1990. 376 p.
- 332 reads