ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Grigoriev A. D. Modern methods for transient electromagnetic fields simulation. Izvestiya VUZ. Applied Nonlinear Dynamics, 1999, vol. 7, iss. 4, pp. 48-58. DOI: 10.18500/0869-6632-1999-7-4-48-58

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 0)
Language: 
Russian
Article type: 
Article
UDC: 
621.372

Modern methods for transient electromagnetic fields simulation

Autors: 
Grigoriev Andrei Dmitrievich, Sankt-Peterburg Electrotechnical University "LETI"
Abstract: 

Modern methods and algorithms for numerical simulation of transient electromagnetic fields are described. Main attention is paid ю the Finite Difference Time Domain method. Basic equations of the method, algorithms of media properties implementation, such as nonhomogeneity, anisotropy, dispersion, non linearity are discussed. Methods of initial and boundary conditions approximation, sources of excitation determining, computational region truncating in case of solving outer boundary electrodynamic problems, algorithms of circuit parameters evaluation from the results of simulation are also presented.

Key words: 
Reference: 
  1. Hahn W.C. A new method for the calculation of cavity resonators. J. Appl. Phys. 1941;12:62-68. DOI: 10.1063/1.1712853.
  2. Grigorjev АD, Yankevich VB. Resonators and resonator deceleration microwave systems. М.: Radio i svyaz; 1984. 248 p. (in Russian).
  3. Grigorjev АD, Silaev SA. Three-dimensional mathematical models of wave electromagnetic fields. Moscow University Physics Bulletin. 1992;33(3):20-33.
  4. Уее KS. Numerical solution оf initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Prop. 1966;14(3):302-307. DOI: 10.1109/TAP.1966.1138693.
  5. Johns PB, Beurle RL. Numerical solution оf 2—dimensional scattering problems using а transmission line matrix. Proc. Inst. Elec. Eng. 1971;118(9):1203-1208.
  6. Johns PB. Simulation оf electromagnetic wave interaction by transmission line modeling (TLM). Wave Motion. 1988;10(6):597-610. DOI: 10.1016/0165-2125(88)90014-5.
  7. Monorchio А, Mittra R. Time-domain (FE/FDTD) technique for solving complex electromagnetic problems. IEEE Microwave & Guided Waves Letters. 1998;8(2):93-95. DOI: 10.1109/75.658652.
  8. Kunz KS, Luebbers RJ. The Finite Difference Time Domain Method for Electromagnetics. Boca Raton: CRC Press; 1993. 464 p.
  9. Yang H, Railton CJ. Efficient and accurate FDTD algorithm for the treatment of curved material boundaries. IEE Proc. MWAP. 1997;144(5):382-388. DOI: 10.1049/ip-map:19971226.
  10. Sheen DM, Ali SM, Abouzahra MD, Kong JA. Application of the three dimensional finite—difference time—domain method to the analysis оf planar microstrip circuits. IЕЕЕ Trans. Microwave Theory Tech. 1990;38:849-857. DOI: 10.1109/22.55775.
  11. Chen Y, Mittra R, Harms P. Finite—difference time—domain algorithm for solving Maxwell’s equations in rotationally symmetric geometries. IЕЕЕ Trans. Microwave Theory Tech. 1996;44(6):832-839. DOI: 10.1109/22.506441.
  12. Hadi MF, Piket-May M. A modified FDTD (2,4) scheme for modeling electrically large structures with high—phase accuracy. IEEE Trans. Antennas Prop. 1997;45(2):254-264. DOI: 10.1109/8.560344.
  13. Chamberlin K, Gordon L. Modeling good conductors using the finite difference time—domain technique. IEEE Trans. Electromagnetic Comatib. 1995;37(2):210-216. DOI: 10.1109/15.385885.
  14. Schneider J, Hudson S. A finite—difference time—domain method applied to anisotropic material. IEEE Trans. Antennas Prop. 1993;41(7):994-999. DOI: 10.1109/8.237636.
  15. Garcia SG, Hung Вао TM, R. Martin G, Olmedo BG. On the application of finite methods in time domain to anisotropic dielectric waveguides. IЕЕЕ Trans. Microwave Theory Tech. 1996;44(12):2195-2206. DOI: 10.1109/22.556447.
  16. Yildririm BS, Badawy E, Sharawy Е. Finite—difference time—domain analysis оf microwave ferrite devices. In: IEEE MTT-S International Microwave Symposium Digest. Vol. 2. 1997. Denver, CO, USA. P. 1113-1116. DOI: 10.1109/MWSYM.1997.602996.
  17. Joseph RM, Hagness SC, Taflove А. Direct time integration оf Maxwell’s equations in linear dispersive media with absorbtion for scattering and propagation оf femtosecond electromagnetic pulses. Opt. Letters. 1991;16(18):1412-1414. DOI: 10.1364/ol.16.001412.
  18. Sullivan DM. Frequency—dependent FDTD methods using Z tranforms. IEEE Trans. Antennas Prop. 1992;40(10):1223-1230. DOI: 10.1109/8.182455.
  19. Sullivan DM. Z—tranform theory аnd FDTD method. IEEE Trans. Antennas Prop. 1996;44(1):28-34. DOI: 10.1109/8.477525.
  20. Luebbers R, Hunsberger FP, Kunz KS, Standler RB, Schneider M. A frequency—dependent finite—difference time—domain formulation for dispersive materials. IEEE Trans. Electromagnetic Comatib. 1990;32(3):222-227. DOI: 10.1109/15.57116.
  21. Chen Q, Katsurai M, Aoyagi PH. An FDTD formulation for dispersive media using а current density. IEEE Trans. Antennas Prop. 1998;46(11):1739-1746. DOI: 10.1109/8.736632.
  22. Andreev JV, Grigoriev AD. Simulation of transient electromagnetic fields in regions filled with dispersive medium. In: XI Int. Winter School on Micr. Elect & Radiophys. Book оf Abstacts. 2—6 March, 1999. Saratov, Russia. Saratov: Saratov State University Publishing; 1999. P. 65-66.
  23. Joseph RM, Taflowe А. FDTD Maxwell’s equations models for nonlinear electrodynamics аnd optics. IEEE Trans. Antennas Prop. 1997;45(3):364-374. DOI: 10.1109/8.558652.
  24. Buccella C, Orlandi A. Time domain iterative methods for inhomogeneous and non-linear wave equations in lossy media. In: Рrос. of the Third International Conference on Computation in Electromagnetics (Conf. Publ. No. 420). 1996. Bath, UK. P. 265-270. DOI: 10.1049/cp:19960196.
  25. Mur G. Absorbing boundary conditions for finite—difference approximation of time—domain electromagnetic field equation. IEEE Trans. Electromagnetic Comatib. 1981;23(4):377-382. DOI: 10.1109/TEMC.1981.303970.
  26. Blashak JG, Kriegsman. A comparative study оf absorbing boundary conditions. J. Comp. Phys. 1988;77(1):109-139.
  27. Engquist B, Majda А. Absorbing boundary conditions for the numerical simulation of waves. Math. Comp. 1977;31(139):629-651.
  28. Ait—Sadi R, Emson CRI. Practical experience in using absorbing boundary conditions with FDTD method. In: Proc. оf the Third International Conference on Computation in Electromagnetics (Conf. Publ. No. 420). 1996. Bath, UK. P. 36-39. DOI: 10.1049/cp:19960154.
  29. Berenger JP. A perfectly matched layer for the absorbtion of electromagnetic waves. J. Comp. Phys. 1994;114(2):185-200. DOI: 10.1006/jcph.1994.1159.
  30. Mittra R, Pekel U. A new look аt the perfectly matched layer (PML) concept for the reflectionless absorbtion of electromagnetic waves. IEEE Microwave and Guided Wave Letters. 1995;5(3):84-86. DOI: 10.1109/75.366461.
  31. Peng J, Balanis A. A generalized reflection-free domain—truncation method: transparent absorbing boundary. IEEE Trans. Antennas Prop. 1998;46(7):1015-1022. DOI: 10.1109/8.704803.
  32. Oguz U, Gurel L, Arikan О. An efficient and accurate technique for thе incident-wave excitations in the FDTD method. IЕЕЕ Trans. Microwave Theory Tech. 1998;46(6):869-882. DOI: 10.1109/22.681215.
  33. Buechler DN, Roper DH, Durney CH, Christensen DA. Modeling sources in FDTD formulation аnd their use in quantifying source and boundary condition errors. IЕЕЕ Trans. Microwave Theory Tech. 1995;43(4):810-814. DOI: 10.1109/22.375228.
  34. Martin Т. An improved near— to far-zone transformation for the finite-difference time-domain method. IEEE Trans. Antennas Prop. 1998;46(9):1263-1271. DOI: 10.1109/8.719968.
Received: 
27.04.1999
Accepted: 
03.08.1999
Published: 
01.10.1999