For citation:
Alcover-Garau P., Nepomuceno E. When integers embrace the beauty of complex numbers. Izvestiya VUZ. Applied Nonlinear Dynamics, 2026, vol. 34, iss. 1, pp. 161-175. DOI: 10.18500/0869-6632-003201, EDN: MZZJHG
When integers embrace the beauty of complex numbers
Purpose. This article investigates how fixed-point arithmetic and discrete recursive models can reveal structured behaviours in systems traditionally considered chaotic.
Methods. Departing from the assumption of continuous space and infinitesimal precision, we simulate two well-known dynamical systems — the logistic map and the Mandelbrot set — using integer-based arithmetic.
Results. Our findings show that when recursion unfolds over finite discrete sets, unexpected geometric regularities and modular symmetries emerge. In particular, we identify moire-type interference patterns and a form of emergent ´ scalar symmetry that are intrinsic to the arithmetic structure and not artifacts of rounding error.
Conclusion. These results suggest the need to reconsider the foundations of mathematical modelling in physics and point toward the development of a discrete formalism that captures aspects of reality concealed by continuous formulations.
- Penrose R. The Road to Reality: A Complete Guide to the Laws of the Universe. Random House; 2016. 1094 p.
- Hagar A. Discrete or Continuous?: The Quest for Fundamental Length in Modern Physics. Cambridge: Cambridge University Press; 2014. 267 p DOI: 10.1017/CBO9781107477346.
- Rovelli C. Reality is not What it Seems: the Journey to Quantum Gravity. NY: Riverhead Books; 2017. 280 p.
- Rovelli C. Seven Brief Lessons on Physics. NY: Riverhead Books; 2016. 96 p.
- Rovelli C. What if time didn't exist? Herder Editorial; 2015. 156 p.
- Greene B. The Elegant Universe. Random House; 2011. 512 p.
- Greene B. The Fabric of the Cosmos: Space, Time, and the Texture of Reality. Knopf Doubleday Publishing Group; 2007. 592 p.
- Kaku M. Hyperspace: A Scientific Odyssey Through Parallel Universes, Time Warps, and the Tenth Dimension. Oxford: Oxford University Press; 2018. 384 p.
- Dirac PA M. The relation between mathematics and physics. Proceedings of the Royal Society of Edinburgh. 1940;59:122-129 DOI: 10.1017/S0370164600012207.
- Wigner E P. The unreasonable effectiveness of mathematics in the natural sciences. Communications on Pure and Applied Mathematics 1960;13(1):1-14 DOI: 10.1002/cpa.3160130102.
- Born M. Statistical interpretation of quantum mechanics. Science. 1955;122(3172):675-679 DOI: 10.1126/science.122.3172.675.
- Feynman R P. Simulating physics with computers. Int. J. Theor. Phys. 1982;21:467-488 DOI: 10.1007/BF02650179.
- Tegmark M . Our Mathematical Universe: My Quest for the Ultimate Nature of Reality. NY: Knopf; 2012. 432 p.
- Lederman LM, Teresi D. The God Particle: If the Universe is the Answer, What is the Question? Houghton Mifflin; 2006. 434 p.
- Alcover-Garau P-M. Moiré interferences in the map of orbits of the Mandelbrot Set. Communica-tions in Nonlinear Science and Numerical Simulation. 2017;42:545-559. 10.1016/j.cnsns.2016.06.01610.1016/j.cnsns.2016.06.016.
- Alcover-Garau P-M. Cause and origin of moire interferences in recursive processes and with fixed-point and floating-point data types. Communications in Nonlinear Science and Numerical Simulation. 2020;80:104995 DOI: 10.1016/j.cnsns.2019.104995.
- Alcover-Garau P-M. Emergent scalar symmetry in discrete dynamical systems. Discrete and Continuous Dynamical Systems - B. 2024;29(1):37-67 DOI: 10.3934/dcdsb.2023085.
- IEEE Standard for floating-point arithmetic. IEEE Std 754-2019 (Revision of IEEE 754-2008). NY: IEEE; 2019. 84 p.
- Devaney R L. An Introduction to Chaotic Dynamical Systems. Avalon Publishing; 2003. 362 p.
- May R M. Simple mathematical models with very complicated dynamics. Nature. 1976;261:459-167.
- Sharkovskii O. Coexistence of cycles of a continuous map of the line into itself. Int. J. Bifurc. Chaos. 1995;5(5):1263-1273 DOI: 10.1142/S0218127495000934.
- Li T-Y, Yorke J A. Period three implies chaos. The American Mathematical Monthly. 1975;82(10):985-992.
- Feigenbaum M J. The universal metric properties of nonlinear transformations. Journal of Statistical Physics. 1979;21(6):669-706 DOI: 10.1007/BF01107909.
- Křížek M, Luca F, Somer L. 17 Lectures on Fermat Numbers. From Number Theory to Geometry. NY: Springer; 2013.
- Zwillinger D. CRC Standard Mathematical Tables and Formulae. NY: CRC Press; 2018. 872 p.
- Sprott J C. Strange Attractors: Creating Patterns in Chaos. NY: M and T Books; 1993. 426 p.
- Mendes, Eduardo MAM, Nepomuceno E G. A very simple method to calculate the (positive) largest Lyapunov exponent using interval extensions. Int. J. Bifurc. Chaos. 2016;26(13):1650226 DOI: 10.1142/S0218127416502266.
- Middleton R, Goodwin G . Improved finite word length characteristics in digital control using delta operators. IEEE Transactions on Automatic Control. 1986;31(11):1015-1021. 10.1109/TAC.1986.110416210.1109/TAC.1986.1104162.
- Butusov DN, Karimov TI, Kaplun DI, Karimov AI, Huang Y, Li SC . The choice between delta and shift operators for low-precision data representation. In: 2017 20th Conference of Open Innovations Association (FRUCT); 2017. P. 46-52 DOI: 10.23919/FRUCT.2017.8071291.
- 333 reads