ISSN 0869-6632 (Online)
ISSN 2542-1905 (Print)


Cite this article as:

Zulpukarov M. M., Malineckij G. G., Podlazov A. V. Bifurcation theory inverse problem in a noisy dynamical system. Example solution. Izvestiya VUZ. Applied Nonlinear Dynamics, 2005, vol. 13, iss. 6, pp. 3-23. DOI: https://doi.org/10.18500/0869-6632-2005-13-5-3-23

Language: 
Russian

Bifurcation theory inverse problem in a noisy dynamical system. Example solution

Autors: 
Zulpukarov Magomed-Gerej Medzhidovich, Keldysh Institute of Applied Mathematics (Russian Academy of Sciences)
Malineckij Georgij Gennadevich, Keldysh Institute of Applied Mathematics (Russian Academy of Sciences)
Podlazov Andrej Viktorovich, Keldysh Institute of Applied Mathematics (Russian Academy of Sciences)
Abstract: 

Bifurcations in nonlinear systems with weak noise are considered. The local bifurcations are discussed: the saddle-node bifurcation, the transcritical bifurcation, the supercritical and subcritical pitchfork bifurcations.   Basing on the known prebifurcational noise rise and saturation phenomenon, the inverse problem is introduced: the problem of the bifurcation detection and determining it’s type by the observed noise change (noise deviation growth fashion, saturation level, probability density). The inverse problem solution algorithm is suggested.

Key words: 
DOI: 
10.18500/0869-6632-2005-13-5-3-23
References: 

1. Малинецкий Г.Г., Потапов А.Б. Современные проблемы нелинейной динамики. М.: УРСС, 2002. 2. Кравцов Ю.А., Бильчинская С.Г., Бутковский О.Я., Рычка И.А., Суровяткина Е.Д. Предбифуркационное усиление шума в нелинейных системах // Журнал экспериментальной и теоретической физики. 2001. Т. 120, вып. 6 (12). С. 1527–1534. 3. Малинецкий Г.Г., Подлазов А.В., Кузнецов И.В. О национальной системе научного мониторинга. Препринт Института прикладной математики им. М.В. Келдыша РАН. 2004, No 47. 4. Николис Г., Пригожин И. Самоорганизация в неравновесных системах. М.: Мир, 1979. 5. Капица С.П., Курдюмов С.П., Малинецкий Г.Г. Синергетика и прогнозы буду- щего. Изд. 3. М.: УРСС, 2003. 6. Wiesenfeld K. Virtual Hopf phenomenon: A new precursor of period-doubling bifurcations // Phys. Rev. A. Vol. 32, No 3, September 1985. P. 1744–1751. 7. Kravtsov Yu. A. and Surovyatkina E.D. Nonlinear saturation of prebifurcation noise amplification // Phys. Let. A. Vol. 319, Issues 3–4, 8 December 2003. P. 348–351. 8. Surovyatkina E. Prebifurcation noise amplification and noise-dependent hysteresis as indicators of bifurcations in nonlinear geophysical systems // Nonlinear Processes in Geophysics (2005) 12. P. 25–29. 9. Juel A., Darbyshire A.G., Mullin T. The effect of noise on pitchfork and Hopf bifurcations // Proc. R. Soc. Lond. A (1997) 453, 2627–2647. 10. Anishchenko V.S., Neiman A.B. Structure and Properties of Chaos in the Presence of Noise // «Nonlinear Dynamics of Structures» / Edited by R. Z. Sagdeev, U. Frisch, F. Hussain, S.S. Moiseev and N.S. Erokhin. Singapore–New Jersey–London–Hong Kong: World Scientific, 1991. P. 21–48. 11. Surovyatkina E.D. Rise and saturation of the correlation time near bifurcation threshold // Phys. Let. A. Vol. 329, Issue 3, 23 August 2004. P. 169–172. 12. Surovyatkina E., Kurths Ju. Pre-bifurcational noise-dependent phenomena as diagnostic instrument for revealing bifurcations in geophysical systems // Geophysical Research Abstracts. 2005. Vol. 7. P. 00462. 13. Малинецкий Г.Г. Хаос. Структуры. Вычислительный эксперимент. Введение в нелинейную динамику. М.: Наука, 1997. 14. Йосс Ж., Джозеф Д. Элементарная теория устойчивости и бифуркаций. М.: Мир, 1983. 15. Зельдович Я.Б., Мышкис А.Д. Элементы математической физики. Среда из невзаимодействующих частиц. М.: Наука, 1973. 16. Федорюк М. В. Метод перевала. М.: Наука, 1977. 17. Тихонов А.Н., Арсенин В.Я. Методы решения некорректных задач. М.: Наука, 1979.

Short text (in English): 
Full text: