ISSN 0869-6632 (Online)
ISSN 2542-1905 (Print)

Cite this article as:

Kuznecov A. P., Paksjutov V. I. Dynamics of two nonidentical coupled self-sustained systems with period doublings on the example of r ? ossler oscillators. Izvestiya VUZ, 2006, vol. 14, iss. 2, pp. 3-15. DOI:


Dynamics of two nonidentical coupled self-sustained systems with period doublings on the example of r ? ossler oscillators

Kuznecov Aleksandr Petrovich, Saratov State University
Paksjutov Vladimir Igorevich, Saratov State University

The system of two coupled R? ossler oscillators is considered. Detailed investigation is carried out on the plane of parameters which control the period-doubling bifurcations in the subsystems. Dynamical regimes in di?erent points of the control parameter plane are determined using the methods of the bifurcation plot and the highest nonzero Lyapunov exponent plot computation. The synchronization picture of two coupled R? ossler oscillators is compared with synchronization pictures of more simple systems: two coupled Van der Pol oscillators and coupled logistic maps. The boundary structure of synchroniza- tion areas is investigated by calculation of the system multiplicators, and the sequence of codimension-two points is found.

Key words: 

1. Анищенко В.С., Вадивасова Т.Е., Астахов В.В. Нелинейная динамика хаотических и стохастических систем. Саратов: Изд-во Сарат. ун-та, 1999. 2. Mosekilde E., Maistrenko Y., Postnov D. Chaos synchronization. Application to living systems // World Scientific Series on Nonlinear Science. 2002. Series A. Vol. 42. P. 440. 3. Jian-Min Yuan, Mingwhei Tung, Da Hsuan Feng, and Lorenzo M. Narducci. Instability and irregular behaviour of coupled logistic equations // Phys. Rev. A. 1983. Vol. 28, No 3. P. 1662. 4. Кузнецов А.П., Седова Ю.В., Сатаев И.Р. Устройство пространства управляющих параметров неидентичных связанных систем с удвоениями периода // Изв. вузов. Прикладная нелинейная динамика. 2004. Т. 12, No 5. С. 46. 5. Reike C., Mosekilde E. Emergence of quasiperiodicity in symmetrically coupled, identical period-doubling systems // Phys. Rev. E52. 1995. P. 1418. 6. Rasmussen J., Mosekilde E., Reick C. Bifurcations in two coupled Rossler systems  // Mathematics and Computers in Simulation. 1996. Vol. 40. P. 247. 7. Иванченко М.В., Осипов Г.А., Шалфеев В.Д. Иерархии регулярной и хаотической синхронизации в системе связанных осцилляторов Ресслера // Труды (шестой) научной конференции по радиофизике / Ред. А.В. Якимов. Н. Новгород, 2002. С.114. 8. Кузнецов С.П. Динамический хаос. М.: Физматлит, 2001. 296 с. 9. Yanchuk S., Maistrenko Y., Mosekilde E. Loss of synchronization in coupled Rossler  systems // Physica D. 2001. Vol. 154. P. 26. 10. Yanchuk S., Kapitaniak T. Chaos-hyperchaos transition in coupled Rossler systems  // Physics Letters A. 2001. Vol. 290. P. 139. 11. Stagliano J., Wersinger J., Slaminka E. Doubling bifurcations of destroyed tori // Physica D. 1996. Vol. 92. P. 164. 12. Кузнецов А.П., Паксютов В.И. Особенности устройства пространства параметров двух неидентичных связанных осцилляторов Ван дер Поля – Дуффинга // Изв. вузов. Прикладная нелинейная динамика. 2005. Т. 13, No 4. С. 3. 13. Kuznetsov S.P., Sataev I.R. Universality and scaling for the breakup of phase synchronization at the onset of chaos in a periodically driven Rossler oscillator // Phys.  Rev. E. 2001. Vol. 64, No 4, 046214.

Short text (in English): 
Full text: