ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Bogdanov N. S., Kuznetsov A. P. Map «atlas» of dynamic modes for standard models of nonlinear dynamics and of radiophysic systems. Izvestiya VUZ. Applied Nonlinear Dynamics, 2000, vol. 8, iss. 1, pp. 80-91.

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 0)
Language: 
Russian
Article type: 
Article
UDC: 
517.9

Map «atlas» of dynamic modes for standard models of nonlinear dynamics and of radiophysic systems

Autors: 
Bogdanov Nikolay Sergeevich, Saratov State University
Kuznetsov Aleksandr Petrovich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Abstract: 

One of the most effective computer methods of two-parametrical research of nonlinear systems is the construction of maps of dynamic modes. On maps the certain colours designate cycles of the various periods and areas of chaotic dynamics. The variety of noulinear model and radiophysical systems has required to create some kind of «atlas» of maps for most known of them. Most of basic classes of dynamic systems are submitted: one-dimensional irreversible maps, two-dimensional convertible maps, flows and nonauthonomous systems.

Key words: 
Acknowledgments: 
The authors are grateful to S.P. Kuznetsov and I.R. Sataev for helpful discussion. The work was supported by the RFBR (grant № 97-02-16414) and Ministry of General and Professional Education of the Russian Federation № 97-0-8.3-88.
Reference: 
  1. Carcasses J, Mira C, Bosch M, Simo C, Tatjer JC. “Crossroad area - spring area” transition (1) Parameter plane representation. Int. J. Bifurc. Chaos. 1991;1(1):183-196. DOI:10.1142/S0218127491000117
  2. Kuznetsov AP, Kuznetsov SP, Sataev IR. Critical dynamics of one-dimensional mappings. Part 2. Two-parameter transition to chaos. Izvestiya VUZ. Applied Nonlinear Dynamics. 1993;1(3):17-35.
  3. MacKay RS, Van Zeijts JB. Period doubling for bimodal maps: a horseshoe for a renormalization operator. Nonlinearity. 1988;1(1):253-277.
  4. Kuznetsov AP, Kuznetsov SP, Sataev IR. Codimension and typicity in a context of description of transition to chaos via period-doubling in dissipative dynamical systems. Regul. Chaotic Dyn. 1997;2(3-4):90-105. DOI: 10.1070/RD1997v002n04ABEH000050.
  5. Schuster HG. Deterministic Chaos: An Introduction. N.Y.: Wiley;2005. 287 p. DOI:10.1002/3527604804.
  6. Kuznetsov AP. Through the computer screen into the world of nonlinear dynamics. Izvestiya VUZ. Applied Nonlinear Dynamics. 1998;6(5):89.
  7. Mira C, Carcasses J. On the "Crossroad area –saddle area" and "Crossroad area–spring area " transitions. Int. J. Bifurc. Chaos. 1991;1(3):641-655. DOI: 10.1142/S0218127491000464.
  8. Kuznetsov AP, Kuznetsov SP, Sataev IR. Three-parameter scaling for one-dimensional maps. Phys.Lett. А. 1994;189:367-373.
  9. Kuznetsov AP, Kuznetsov SP, Sataev IR. A variety of period-doubling universality classes in multi-parameter analysis of transition to chaos. Physica D. 1997;109(1-2):91-112. DOI: 10.1016/S0167-2789(97)00162-0.
  10. Chang SJ, Wortis M, Wright JA. Iterative properties of a one-dimensional quartic map. Critical lines and tricritical behavior. Phys. Rev. A. 1981. Vol. 24, No 5. Р. 2669. DOI:10.1103/PhysRevA.24.2669.
  11. Henon M. A two-dimensional mapping with a strange attractor. Commun.Math. Phys. 1976;50:69-77. DOI: 10.1007/BF01608556.
  12. Lichtenberg AJ, Lieberman MA. Regular and Stochastic Motion. N.Y.:Springer; 1983. 499 p. DOI: 10.1007/978-1-4757-4257-2.
  13. Kuznetsov AP, Kuznetsov SP, Sataev IR. From bimodal one-dimensional maps to Henon-like two-dimensional maps: does quantitative universality survive?.  Phys.Lett. A. 1994;164:413-421.
  14. Holmes PJ. A nonlinear oscillator with a strange attractor. Philos. Trans. R. Soc. London A. 1979;292(1394):419-448. DOI: 10.1098/rsta.1979.0068
  15. Thompson JMT, Stewart HB. Nonlinear dynamics and chaos. Chichester:Wiley, 1986. 376 р.
  16. Glass L, Perez R. Fine structure of phase locking. Phys. Rev. Lett. 1982;48:1772-1775. DOI:10.1103/PhysRevLett.48.1772.
  17. Jensen MH, Bak P, Bohr T. Transition to chaos by interraction of resonances in dissipative systems. I. Circle maps. Phys. Rev. A. 1984;30(4):1960-1969. DOI: 10.1103/PhysRevA.30.1960.
  18. Schell M, Fraser S, Kapral R. Subharmonic bifurcation in the sine map: An infinite hierarchy of cusp bistabilities. Phys. Rev. A. 1983;28(1):373-378. DOI: 10.1103/PhysRevA.28.373.
  19. Feigenbaum MJ, Hasslacher B. Irrational Decimations and Path Integrals for External Noise. Phys. Rev. Lett. 1982;49:605-609. DOI: 10.1103/PhysRevLett.49.605.
  20. Zaslavsky G.M. Stochasticity of dynamic systems. М.: Nauka, 1984. 272 p. (in Russian).
  21. Anishchenko VS, Vadivasova TE, Sosnovtseva OV. The mechanism of the birth of a strange chaotic attractor in the mapping of a ring with quasiperiodic action. Izvestiya VUZ. Applied Nonlinear Dynamics. 1995;3(3):34. 
  22. Garel D, Garel O. Oscillations in Chemical Reactions. Berlin: Springer;1983. 147 p.
  23.  Rösler O. An equation for continuous chaos. Phys. Lett. А. 1976;57(5):397-398. DOI:10.1016/0375-9601(76)90101-8.
  24.  Anishchenko VS. Complex oscillations in simple systems.М.: Nauka; 1990. 312 p. (in Russian)
  25. Mozekilde E. Topics in nonlinear dynamic. World Scientific Publishing Co. Pte. Ltd, 1996. 380 p.
  26.  Dmitriev AS, Kislov VYa. Stochastic oscillations in radiophysics and electronics. М.: Nauka;1989. 280 p. (in Russian).
  27.  Hu B. A simple derivation of the stochastic eigenvalue equation in the transition from quasiperiodicity to chaos. Phys. Lett. A. 1983;98(3):79-82. DOI: 10.1016/0375-9601(83)90731-4.
  28. Feudel U, Grebogi G, Ott E. Phase-locking in quasiperiodically forced systems. Phys. Reports. 1997;290(1-2):11-25. DOI: 10.1016/S0370-1573(97)00055-0.
Received: 
07.09.1999
Accepted: 
28.12.1999
Published: 
15.04.2000