ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Bliokh Y. P. Accidental resonators. Izvestiya VUZ. Applied Nonlinear Dynamics, 2012, vol. 20, iss. 4, pp. 85-97. DOI: 10.18500/0869-6632-2012-20-4-85-97

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
Article type: 

Accidental resonators

Bliokh Yury Pavlovich, Israel Institue of Technology "Technion"

Anderson localization of electromagnetic waves incident on a disordered medium manifests itself in exponential decrease of the wave amplitude inwards the medium. Transparency of the medium is exponentially small if the medium thickness is large enough. However, there is a set of frequencies (resonances), specific for every random realization of the disordered medium, for which the medium is almost transparent. These sets are «fingerprints» of the media: every realization is characterized by its own unique set of resonances. Any resonance is associated with accidently formed resonator: accidently transparent region («cavity») surrounded by almost non-transparent (due to the wave localization) «walls». This unambiguous correspondence allows determination of the medium parameters and the wave amplitude distribution within the given sample of randomly disordered medium using externally measured characteristics of the resonances.

  1. Anderson PW. Absence of diffusion in certain random lattices. Phys. Rev. 1958;109(5):1492–1505. DOI: 10.1103/PhysRev.109.1492.
  2. Lagendijk A, van Tiggelen B, Wiersma DS. Fifty years of Anderson localization. Phys. Today. 2009;62(8):24. DOI: 10.1063/1.3206091.
  3. Berry MV, Klein S. Transparent mirrors: rays, waves and localization. Eur. J. Phys. 1997;18(3):222–229. DOI: 10.1088/0143-0807/18/3/017.
  4. McKenzie DR, Yin Y, McFall WD. Silvery fish skin as an example of a chaotic reflector. Proc. R. Soc. Lond. A. 1997;451(1943):579–584. DOI: 10.1098/rspa.1995.0144.
  5. Parker AR. A geological history of reflecting optics. J. R. Soc. Interface. 2005;2(2):1–17. DOI: 10.1098/rsif.2004.0026.
  6. Bliokh Y, Chaikina EI, Lizarraga N, Freilikher V, Mendez E, Nori F.  Disorder-induced cavities, resonances, and lasing in randomly-layered media. Phys. Rev. B. 2012;86(5):054204. DOI: 10.1103/PhysRevB.86.054204.
  7. Lifshitz IM, Kirpichenkov VY. Tunnel transparency of disordered systems. Sov. Phys. JETP. 1979;50(3):499–511.
  8. Pendry J. Quasi-extended electron states in strongly disordered systems. J. Phys. C. 1987;20(5):733–743. DOI: 10.1088/0022-3719/20/5/009.
  9. Bliokh KY, Bliokh Y, Freilikher V, Genack A, Hu B, Sebbah P. Localized modes in open one-dimensional dissipative random systems. Phys. Rev. Lett. 2006;97(24):243904. DOI: 10.1103/PhysRevLett.97.243904.
  10. Bliokh KY, Bliokh Y, Freilikher V, Genack A, Sebbah P. Coupling and level repulsion in the localized regime: from isolated to quasi-extended modes. Phys. Rev. Lett. 2008;101(13):133901. DOI: 10.1103/PhysRevLett.101.133901.
  11. Scales JA, Carr LD, McIntosh DB, Freilikher V, Bliokh YP. Millimeter wave localization: Slow light and enhanced absorption in random dielectric media. Phys. Rev. B 2007;76(8):085118. DOI: 10.1103/PhysRevB.76.085118.
  12. Cao H. Lasing in random media. Waves in Random Media. 2003;13(3):R1–R39. DOI: 10.1088/0959-7174/13/3/201.
  13. Cao H. Review on latest developments in random lasers with coherent feedback. J. Phys. A. 2005;38(49):10497–10537. DOI: 10.1088/0305-4470/38/49/004.
  14. Wiersma DS. The physics and applications of random lasers. Nature Phys. 2008;4(5):359–367. DOI: 10.1038/nphys971.
  15. Shadrivov I, Bliokh K, Bliokh Y, Freilikher V, Kivshar Y. Bistability of Anderson localized states in nonlinear random media. Phys. Rev. Lett. 2010;104(12):123902. DOI: 10.1103/PhysRevLett.104.123902.
Short text (in English):
(downloads: 94)