ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


Error message

  • Notice: Undefined variable: organizations in formatter_user_fioandorganizations_short_field_formatter_view() (line 95 of /fs/www/izvestiya_new/public/sites/all/modules/custom/formatter_user_fioandorganizations_short/formatter_user_fioandorganizations_short.module).
  • Notice: Undefined variable: organizations in formatter_user_fioandorganizations_short_field_formatter_view() (line 104 of /fs/www/izvestiya_new/public/sites/all/modules/custom/formatter_user_fioandorganizations_short/formatter_user_fioandorganizations_short.module).

For citation:

Benner G. ., Henn R., Redelshperger F. ., Vize G. . Analysing and controlling chaos in spin-wave instabilities. Izvestiya VUZ. Applied Nonlinear Dynamics, 1995, vol. 3, iss. 1, pp. 32-51. DOI: 10.18500/0869-6632-1995-3-1-32-51

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(En):
(downloads: 32)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
539.21

Analysing and controlling chaos in spin-wave instabilities

Abstract: 

Ferromagnetic samples excited by strong microwave fields show а variety об nonlincar phenomena. We report on magnetic resonance experiments in ylirium iron garnet (YIG) probing spin-wave instabilities above the first-order Subl threshold. A variety of dif- ferent scenarjos, e.g. period doubling routes, quasiperiodicity. different types of intermitiency together with a very complex muliistability have been found and analysed. In the case of nonresonant excitation of the uniform mode the observed chaotic autooscillations correspond to а low-dimensional attractor (D2 ≈2.1) with а characteristic time scale of μs, whereas for resonant excitation very high-dimensional atiractors (D2≈7... >15) are obtained. In order to stabilise unstable periodic orbits in such а fast system we developed ап analog feedback device, which is related to the controlling scheme of Ott, Grebogi and Yorke. We succeeded in suppressing the low-dimensional chaos by applying а very small time-dependent feedback signal of about 10^-3 the amplitude of the input microwave field.

Key words: 
Acknowledgments: 
We thank Prof.Dr.W.Tolksdorf from Philips Research Laboratory, Hamburg, for supplying us with high quality samples. This project of SFB 185 «Nichtlineare Dynamik» was partly financed by special funds of the Deutsche Forschungsgemeinschaft.
Reference: 
  1. Damon RW. In: Rado GT, Suhl H, editors. Magnetism. Vol. 1. N.Y: Academic Press; 1963. P. 551.
  2. Damon RW. Relaxation effects in the ferromagnetic resonance. Rev. Mod. Phys. 1953;25(1):239-245. DOI: 10.1103/RevModPhys.25.239.
  3. Bloembergen N, Wang S. Relaxation effects in para- and ferromagnetic resonance. Phys. Rev. 1954;93(1):72-83. DOI: 10.1103/PhysRev.93.72.
  4. F.R. Morgenthaler: J. Appl. Phys. 31, 95S (1960).
  5. Schlomann ES, Green JJ, Milano U. Recent Developments in Ferromagnetic Resonance at High Power Levels. J. Appl. Phys. 1960;31:S386-S396. DOI: 10.1063/1.1984759.
  6. Suhl H. The theory of ferromagnetic resonance at high signal powers. J. Phys. Chem. Solids. 1957;1(4):209-227. DOI: 10.1016/0022-3697(57)90010-0.
  7. Zakharov VE, Lvov VS, Starobinets SS. Spin-wave turbulence beyond the parametric excitation threshold. Sov. Phys. Usp. 1975;17(6):896-919. DOI: 10.1070/PU1975v017n06ABEH004404.
  8. Lvov VS, Prozorova LA. Spin waves above the threshold of parametric excitation. In: Borovik-Romanov AS, Sinha SK, editors. Spin Waves and Magnetic Excitations. Amsterdam: Elsevier; 1988. P. 233-285.
  9. Wigen PhЕ, editor. Nonlinear Phenomena and Chaos in Magnetic Materials. Singapore: World Scientific; 1994. 260 p. DOI: 10.1142/1686. 
  10. Gibson G, Jeffries C. Observation of period doubling and chaos in spin-wave instabilities in yttrium iron garnet. Phys. Rev. A. 1984;29(2):811-818. DOI: 10.1103/PhysRevA.29.811.
  11. Waldner F, Barberis DR, Yamazaki H. Route to chaos by irregular periods: Simulations of parallel pumping in ferromagnets. Phys. Rev. A. 1985;31(1):420-431. DOI: 10.1103/PhysRevA.31.420. Yamazaki H, Warden M. Observations of Deterministic Chaos of Parallel-Pumped Magnons in Ferromagnetic (CH3NH3)2CuCl4. J. Phys. Soc. Jpn. 1986;55(12):4477-4484. DOI: 10.1143/JPSJ.55.4477.
  12. Rezende SM. Observation of subharmonic routes to chaos in parallel-pumped spin waves in yttrium iron garnet. Phys. Rev. Lett. 1986;56(10):1070-1073. DOI: 10.1103/PhysRevLett.56.1070. de Aguiar FM, Azevedo A, Rezende SM. Characterization of strange attractors in spin-wave chaos. Phys. Rev. B. 1989;39(13):9448-9452. DOI: 10.1103/physrevb.39.9448.
  13. Caroll TL, Pecora LM, Rachford FJ. Chaos and chaotic transients in yttrium iron garnet. J. Appl. Phys. 1988;64:5396-5400. DOI: 10.1063/1.342380. Caroll TL, Pecora LM, Rachford FJ. Chaos and chaotic transients in an yttrium iron garnet sphere. Phys. Rev. A 1989;40(1):377-386. DOI: 10.1103/physreva.40.377.
  14. Benner H, Rodelsperger E, Seitz H, Wiese G. Multistability and chaos by paramereic excitation of magnetostatic modes. J. Phys. Colloque. 1988;49(С8):1603-1604. DOI: 10.1051/jphyscol:19888734. Benner H, Rodelsperger F, Wiese G. Chaotic Dynamics in Spin-Wave Instabilities. In: Thomas H, editor. Nonlinear Dynamics in Solids. Berlin: Springer; 1992. P. 129-155. DOI: 10.1007/978-3-642-95650-8_8.
  15. Warden M, Waldner E. Locking and chaos in magnetic resonance experiments. J. Appl. Phys. 1988;64(10):5386-5390. DOI: 10.1063/1.342378.
  16. Wigen PE, Dotsch H, Ye M, Baselgia L, Waldner E. Chaos in magnetic garnet thin films. J. Appl. Phys. 1988;63(8):4157-4159. DOI:  10.1063/1.340525.
  17. Bryant PH, Jeffries CD, Nakamura K. Spin-wave dynamics in a ferrimagnetic sphere. Phys. Rev. A 1988;38(8):4223-4240. DOI: 10.1103/physreva.38.4223.
  18. Yamazaki H, Mino M. Chaos in spin-wave instabilities: theory and experiments. Progr. Theor. Phys. Suppl. 1989;98:400-419. DOI: 10.1143/PTPS.98.400.
  19. Nakamura K, Ohta S, Kawasaki K. Chaotic states of ferromagnets in strong parallel pumping fields. J. Phys. C 1982;15(6):L143. DOI: 10.1088/0022-3719/15/6/004.
  20. Zhang XY, Sull H. Spin-wave-related period doublings and chaos under transverse pumping. Phys. Rev. A. 1985;32(4):2530-2533. DOI: 10.1103/PhysRevA.32.2530.
  21. Rezende SM, de Alcantara Bonfim OF, de Aguiar FM. Model for chaotic dynamics of the perpendicular-pumping spin-wave instability. Phys. Rev. B. 1986;33(7):5153-5156. DOI: 10.1103/physrevb.33.5153.
  22. Zhang XY, Sull H. Theory of auto-oscillations in high-power ferromagnetic resonance. Phys. Rev. B. 1988;38(7):4893-4905. DOI: 10.1103/PhysRevB.38.4893.
  23. Lim SP, Huber DL. Microscopic theory of spin-wave instabilities in parallel-pumped easy-plane ferromagnets. Phys. Rev. B. 1988;37(10):5426-5431. DOI: 10.1103/PhysRevB.37.5426.
  24. Cherepanov VB, Slavin AN. Collective spin-wave oscillations in finite-size ferromagnetic samples. Phys. Rev. B. 1993;47(10):5874-5880. DOI: 10.1103/PhysRevB.47.5874.
  25. Waldner F. A 'stroboscopic model' for nonlinear ferromagnetic resonance phenomena. J. Phys. С. 1988;21(7):1243-1255. DOI: 10.1088/0022-3719/21/7/013.
  26. Wiese G, Benner H. Multistability and chaos by parametric excitation of longwave modes in a YIG sphere. Z. Phys. В. 1990;79:119-131. DOI: 10.1007/BF01387833.
  27. Wiese G, Krug von Nidda H-A, Benner H. Temperature- induced nonlinearity at parametrically excited spin waves. Europhys. Lett. 1991;15(6):585-590. DOI: 10.1209/0295-5075/15/6/004.
  28. Wiese G. Parametric excitation of spherical modes in ferromagnetic spheres by perpendicular and parallel pumping. Z. Phys. B 1991;82:453-463. DOI: 10.1007/BF01357194.
  29. Krug von Nidda HA, Wiese G, Benner H. Fine structure and critical modes at the first-order Suhl instability in YIG spheres. Z. Phys. B. 1994;95:55-62. DOI: 10.1007/BF01316843.
  30. Ott E, Grebogi C, Yorke JA. Controlling chaos. Phys. Rev. Lett. 1990;64(11):1196-1199. DOI: 10.1103/PhysRevLett.64.1196.
  31. Landolt-Bornstein New Series, Vol. III/4а. Berlin: Springer; 1970. P. 315.
  32. Schuster HG. Deterministic Chaos. Weinheim: VCH; 1988. 270 p.
  33. Rodelsperger F. Chaos und Spinwelleninstabilititen. Frankfurt: Harri Deutsch; 1994. Rodelsperger F, Benner H, Cenys A. to be published.
  34. Pomeau Y, Manneville P. Intermittent transition to turbulence in dissipative dynamical systems. Commun. Math. Phys. 1980;74:189-197. DOI: 10.1007/BF01197757.
  35. Dе Aguiar FM. Intermittencies in the presence of symmetry in spin-wave experiments. Phys. Rev. A. 1989;40(12):7244-7249. DOI: 10.1103/PhysRevA.40.7244.
  36. Rodelsperger F, Weyrauch T, Benner Н. Different types of intermittency observed in transverse-pumped spin-wave instabilities. J. Magn. Magn. Mater. 1992;104-107(2):1075-1076. DOI: 10.1016/0304-8853(92)90496-B.
  37. Grebogi C, Ott E, Yorke JA. Crises, sudden changes in chaotic attractors, and transient chaos. Physica D. 1983;7(1-3):181-200. DOI: 10.1016/0167-2789(83)90126-4. Grebogi C, Ott E, Rоmeiras F, Yorke JA. Critical exponents for crisis-induced intermittency. Phys. Rev. A. 1987;36(11):5365-5380. DOI: 10.1103/physreva.36.5365.
  38. Patton CE, Jantz W. Anomalous subsidiary absorption in single‐crystal YIG and evaluation of spin‐wave linewidth. J. Appl. Phys. 1979;50(11):7082-7088. DOI: 10.1063/1.325816. Chen M, Patton CE. First‐order instability theory for magnetostatic modes in ferromagnetic spheres. J. Appl. Phys. 1991;69(8):5724-5726. DOI: 10.1063/1.347899.
  39. Bergé P, Pomeau Y, Vidal C. Order within Chaos. N.Y.:  Wiley; 1986. 329 p.
  40. Pesin YaB. Characteristic Lyapunov exponents and smooth ergodic theory. Rus. Math. Surveys. 1977;32(4):55-114. DOI: 10.1070/RM1977v032n04ABEH001639.
  41. Takens F. Detecting strange attractors in turbulence. In: Rand DA, Young LS, editors. Dynamical Systems and Turbulence. Lecture Notes in Mathematics. Berlin: Springer; 1981. P. 366-381. DOI: 10.1007/BFb0091924.
  42. Grassberger P, Procaccia I. Measuring the strangeness of strange attractors. Physica D. 1983;9(1-2):189-208. DOI: 10.1016/0167-2789(83)90298-1. Grassberger P, Procaccia I. Estimation of the Kolmogorov entropy from a chaotic signal. Phys. Rev. A. 1983;28(4):2591-2593. DOI: 10.1103/PhysRevA.28.2591.
  43. Alekseev VV, Loskutov AYu. System control with a strange attractor by means of periodic parametric impact. Sov. Phys. Doklady. 1987;293(6):1346-1348.  Lima R, Pettini M. Suppression of chaos by resonant parametric perturbations. Phys. Rev. A. 1990;41(2):726-733. DOI: 10.1103/PhysRevA.41.726.   Lima R, Pettini M. Reply to ``Comment on `Suppression of chaos by resonant parametric perturbations'. 1993;47(6):4630-4631. DOI: 10.1103/PhysRevE.47.4630.
  44. Parthasarathy S. Homoclinic bifurcation sets of the parametrically driven Duffing oscillator. Phys. Rev. A. 1992;46(4):2147-2150. DOI: 10.1103/PhysRevA.46.2147. Kivshar YS, Rédelsperger F, Benner H. Suppression of chaos by nonresonant parametric perturbations. Phys. Rev. Е. 1994;49(1):319-324. DOI: 10.1103/PhysRevE.49.319.
  45. Landau LD, Lifshitz M, Mechanics. Oxford: Pergamon Press; 1960. 165 p.
  46. Pyragas K. Continuous control of chaos by self-controlling feedback. Phys. Lett. A. 1992;170:421-428. DOI: 10.1016/0375-9601(92)90745-8.
  47. Dressler U, Nitsche G. Controlling chaos using time delay coordinates. Phys. Rev. Lett. 1992;68(1):1-4. DOI: 10.1103/PhysRevLett.68.1.
  48. Hunt ER. Stabilizing high-period orbits in a chaotic system: The diode resonator. Phys. Rev. Lett. 1991;67(15):1953-1955. DOI: 10.1103/PhysRevLett.67.1953.
  49. Rugar D, Mamin НА, Erlandson R, Stern JE, Terris BD. IBM Research Report RJ 6272 (1988).
  50. Pelzl J, Bein BK. Festkörperuntersuchungen mit thermischen Wellen. Physikalische Blätter. 1990;46(1):12-17. DOI: 10.1002/PHBL.19900460111. Rodelsperger F, von Geisau О, Benner Н, Pelzl J. In: Proc. XXVI Congress Ampére on Magnetic Resonance. 1992, Athens, Greece. P. 116.
Received: 
14.01.1995
Accepted: 
26.06.1995
Published: 
15.09.1995