For citation:
Kuznetsov S. P., Majlybaev A. A., Sataev I. R. Bifurcation of universal regimes at the border of chaos. Izvestiya VUZ. Applied Nonlinear Dynamics, 2005, vol. 13, iss. 3, pp. 27-47. DOI: 10.18500/0869-6632-2005-13-3-27-47
Bifurcation of universal regimes at the border of chaos
It is shown that a fixed point of the renormalization group transformation for a system of two subsystems with unidirectional coupling, one represented by a unimodal map with extremum of degree κ and another by a map accumulating a sum of terms expressed as a function of a state of the first subsystem, undergoes a period-doubling bifurcation in a course of increase of the parameter κ. At κ = 2 the respective solution (period-2 cycle of the renormalization group equation) corresponds to a situation at the chaos threshold designated as the C-type critical behavior (Kuznetsov and Sataev, Phys. Lett., 1992, 236). On a basis of combination of analytic considerations and numerical computations, we construct and analyze an asymptotical expansion of the solution over powers of deflection of the parameter κ from the critical value κc = 1, 984396. The approach is analogous to that known in the phase transition theory as ε-expansion, which relates to presence of a bifurcation from a «trivial» fixed point of renormalization group transformation to a new fixed point, responsible for critical behavior with nontrivial critical indices.
- Feigenbaum MJ. Universal behavior in nonlinear systems. Physica D. 1983;7(1–3):16–39. DOI: 10.1016/0167-2789(83)90112-4.
- Feigenbaum M. Universality in the behavior of nonlinear systems. Sov. Phys. Usp. 1983;141(2):343–374. DOI: 10.3367/UFNr.0141.198310e.0343.
- Vul EB, Sinai YG, Khanin KM. Feigenbaum universality and the thermodynamic formalism. Russian Math. Surveys. 1984;39(3):1–40. DOI: 10.1070/RM1984v039n03ABEH003162.
- Neimark YI, Landa PS. Stochastic and Chaotic Oscillations. Dordrecht: Springer; 1992. 500 p. DOI: 10.1007/978-94-011-2596-3.
- Kuznetsov SP. Dynamic Chaos. Moscow: Fizmatlit; 2001. 296 p. (in Russian).
- Greene JM, MacKay RS, Vivaldi F, and Feigenbaum MJ. Universal behavior in families of area-preserving maps. Physica D. 1981;3(3):468–486. DOI: 10.1016/0167-2789(81)90034-8.
- Collet P, Eckmann JP, and Koch H. On universality for area-preserving maps of the plane. Physica D. 1981;3(3):457–467. DOI: 10.1016/0167-2789(81)90033-6.
- Widom M, Kadanoff LP. Renormalization group analysis of bifurcations in area-preserving maps. Physica D. 1982;5(2–3):287–292. DOI: 10.1016/0167-2789(82)90023-9.
- Hu B, Rudnick J. Exact solution of the Feigenbaum renormalization group equations for intermittency. Phys. Rev. Lett. 1982;48(24):1645–1648. DOI: 10.1103/PhysRevLett.48.1645.
- Feigenbaum MJ, Kadanoff LP, and Shenker SJ. Quasiperiodicity in dissipative systems: A renormalization group analysis. Physica D. 1982;5(2–3):370–386. DOI: 10.1016/0167-2789(82)90030-6.
- Ostlund S, Rand D, Sethna J, and Siggia ED. Universal properties of the transition from quasi-periodicity to chaos in dissipative systems. Physica D. 1983;8(3):303–342. DOI: 10.1016/0167-2789(83)90229-4.
- Collet P, Coullet P, and Tresser C. Scenarios under constraint. J. Physique Lett. 1985;46(4):L143–L147. DOI: 10.1051/jphyslet:01985004604014300.
- Greene JM, Mao J. Higher-order fixed points of the renormalisation operator for invariant circles. Nonlinearity. 1990;3(1):69–78. DOI: 10.1088/0951-7715/3/1/005.
- Kuznetsov AP, Kuznetsov SP, Sataev IR. Co-dimensionality and typicality in the context of the problem of describing the transition to chaos through period doubling in dissipative dynamical systems. Regular and Chaotic Dynamics. 1997;2(3–4)90–105 (in Russian).
- Kuznetsov AP, Kuznetsov SP, and Sataev IR. A variety of period-doubling universality classes in multi-parameter analysis of transition to chaos. Physica D. 1997;109(1–2):91–112. DOI: 10.1016/S0167-2789(97)00162-0.
- Kuznetsov AP, Kuznetsov SP, Sataev IR. Critical behavior in the transition to chaos through doubling the period. Model mappings and renormalization group analysis. In: Gaponov-Grekhov AV, Nekorkin VI, editors. Nonlinear Waves-2002. Nizhni Novgorod: IAP RAS; 2003. P. 395–415 (in Russian).
- Wilson K, Kohut J. Renormalization Group and ε-Decomposition. Moscow: Mir; 1975. 255 p. (in Russian).
- Balescu R. Equilibrium and Nonequilibrium Statistical Mechanics. Wiley-Blackwell; 1975. 756 p.
- Kuznetsov AP, Kuznetsov SP, and Sataev IR. Period doubling system under fractal signal: Bifurcation in the renormalization group equation. Chaos, Solitons and Fractals. 1991;1(4):355–367. DOI: 10.1016/0960-0779(91)90026-6.
- Kuznetsov AP, Kuznetsov SP, Sataev IR. Fractal signal and dynamics of systems demonstrating period doubling. Izvestiya VUZ. Applied Nonlinear Dynamics. 1995;3(5):64–87 (in Russian).
- Kuznetsov SP, Sataev IR. New types of critical dynamics for two-dimensional maps. Phys. Lett. A. 1992;162(3):236–242. DOI: 10.1016/0375-9601(92)90440-W.
- Kuznetsov SP, Sataev IR. Period-doubling for two-dimensional non-invertible maps: Renormalization group analysis and quantitative universality. Physica D. 1997;101(3–4):249–269. DOI: 10.1016/S0167-2789(96)00237-0.
- Hu B, Mao JM. Period doubling: Universality and critical-point order. Phys. Rev. A. 1982;25(6):3259–3261. DOI: 10.1103/PhysRevA.25.3259.
- Hu B, Satija II. A spectrum of universality classes in period doubling and period tripling. Phys. Lett. A. 1983;98(4):143–146. DOI: 10.1016/0375-9601(83)90569-8.
- Hauser PR, Tsallis C, and Curado EMF. Criticality of rouds to chaos of the 1 − a|x| z. Phys. Rev. A. 1984;30(4):2074–2079. DOI: 10.1103/PhysRevA.30.2074.
- Guckenheimer J, Holmes P. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. New York: Springer; 1983. 462 p. DOI: 10.1007/978-1-4612-1140-2.
- Kuznetsov SP, Sataev IR. Universality and scaling for the breakup of phase synchronization at the onset of chaos in a periodically driven Rössler oscillator. Phys. Rev. E. 2001;64(4):046214. DOI: 10.1103/PhysRevE.64.046214.
- Kuznetsov AP, Turukina LV, Savin AV, Sataev IR, Sedova JV, and Milovanov SV. Multi-parameter picture of transition to chaos. Izvestiya VUZ. Applied Nonlinear Dynamics. 2002;10(3):80–96 (in Russian).
- 1950 reads