ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


The article published as Early Access!

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
Language: 
Russian
Article type: 
Article
UDC: 
57.024
EDN: 

Biomorphic navigation system version

Autors: 
Malishev Yuri Александрович, Institute of Applied Physics of the Russian Academy of Sciences
Yakhno Vladimir Grigorevich, Institute of Applied Physics of the Russian Academy of Sciences
Abstract: 

The purpose of this work is to create and study the dynamics of the functioning of a biorelevant visual navigation system.

Methods. The work uses simultaneous navigation and mapping systems RatSLAM and Orb-SLAM. The RatSLAM system is a biorelevant model of visual navigation in the rodent hippocampus. The Orb-SLAM system is a simultaneous navigation and mapping system that works on the principle of searching and tracking changes in the position of key points in the image.

Results. The article presents a version of a modified visual navigation system. The system consists of a visual odometry module based on the Orb-SLAM system, as well as a mapping and loop closure module based on the RatSLAM system. This allows you to combine the localization accuracy of systems operating on the principle of tracking key points in the image and neural filtering of biorelevant systems. Using the constructed system, location estimates were obtained on public and new data sets.

Conclusion. The constructed visual navigation system determines the location of the subject (video camera) in space, which is in good agreement with the ground truth location data.

Acknowledgments: 
The study has been supported in the frames of the Governmental Project of the Institute of Applied Physics RAS (Project #FFUF-2024-0037)
Reference: 
  1. Tolman EC. Cognitive maps in rats and men. Psychological Review. 1948;55(4):189–208. DOI: 10.1037/h0061626.
  2. McNaughton BL, Battaglia FP, Jensen O, Moser EI, Moser M-B. Path integration and the neural basis of the “cognitive map”. Nature Reviews Neuroscience. 2006;7:663–678. DOI: 10.1038/ nrn1932.
  3. Mittelstaedt H, Mittelstaedt M-L. Homing by Path Integration. In: Papi F, Wallraff HG, editors. Avian Navigation. Proceedings in Life Sciences. Berlin, Heidelberg: Springer; 1982. P. 290–297. DOI: 10.1007/978-3-642-68616-0_29.
  4. Etienne AS, Maurer R, Boulens V, Levy A, Rowe T. Resetting the path integrator: a basic condition for route-based navigation. Journal of Experimental Biology. 2004;207(9):1491–508. DOI: 10.1242/jeb.00906.
  5. O’Keefe J, Dostrovsky J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Research. 1971;34(1):171–175. DOI: 10.1016/0006- 8993(71)90358-1.
  6. Muller RU, Ranck JB Jr, Taube JS. Head direction cells: properties and functional significance. Current Opinion in Neurobiology. 1996;6(2):196–206. DOI: 10.1016/s0959-4388(96)80073-0.
  7. Taube JS. The head direction signal: Origins and sensory-motor integration. Annual Review of Neuroscience. 2007;30:181–207. DOI: 10.1146/annurev.neuro.29.051605.112854.
  8. Amit DJ. Modeling Brain Function: The World of Attractor Neural Networks. New York, NY: Cambridge University Press; 1989. DOI: 10.1017/cbo9780511623257.004.
  9. Moser E, Roudi Y, Witter MP, Kentros C, Bonhoeffer T, Moser M-B. Grid cells and cortical representation. Nature Reviews Neuroscience. 2014;15:466–481. DOI: 10.1038/nrn3766.
  10. Hafting T, Fyhn M, Molden S, Moser MB, Moser EI. Microstructure of a spatial map in the entorhinal cortex. Nature. 2005;436:801–806. DOI: 10.1038/nature03721.
  11. Milford MJ. Robot Navigation from Nature: Simultaneous Localisation, Mapping, and Path Planning Based on Hippocampal Models. Vol. 41. Springer Tracts in Advanced Robotics. Berlin, Heidelberg: Springer; 2008. 196 p. DOI: 10.1007/978-3-540-77520-1.
  12. Eichenbaum H. The role of the hippocampus in navigation is memory. Journal of Neurophysiology. 2017;117(4):1785–1796. DOI: 10.1152/jn.00005.2017.
  13. Gu Y, Lewallen S., Kinkhabwala AA, Domnisoru C, Yoon K, Gauthier JL, Fiete IR, Tank DW. A map-like micro-organization of grid cells in the medial entorhinal cortex. Cell. 2018;175(3):736– 750. DOI: 10.1016/j.cell.2018.08.066.
  14. Poulter S, Hartley T, Lever C. The neurobiology of mammalian navigation. Current Biology. 2018;28(17):R1023–R1042. DOI: 10.1016/j.cub.2018.05.050.
  15. Park E, Dvorak D, Fenton AA. Ensemble place codes in hippocampus: CA1, CA3, and dentate gyrus place cells have multiple place fields in large environments. PLoS One. 2011;6(7):e22349. DOI: 10.1371/journal.pone.0022349.
  16. Goode TD, Tanaka KZ, Sahay A, McHugh TJ. An integrated index: Engrams, place cells, and hippocampal memory. Neuron. 2020;107(5):805–820. DOI: 10.1016/j.neuron.2020.07.011.
  17. Epstein RA, Patai EZ, Julian JB, Spiers HJ. The cognitive map in humans: spatial navigation and beyond. Nature Neuroscience. 2017;20(11):1504–1513. DOI: 10.1038/nn.4656.
  18. Sarel A, Finkelstein A, Las L, Ulanovsky N. Vectorial representation of spatial goals in the hippocampus of bats. Science. 2017;355(6321):176–180. DOI: 10.1126/science.aak9589.
  19. Savelli F, Knierim JJ. Origin and role of path integration in the cognitive representations of the hippocampus: computational insights into open questions. Journal of Experimental Biology. 2019;222(1):jeb188912. DOI: 10.1242/jeb.188912.
  20. Rolls ET, Stringer SM, Elliot T. Entorhinal cortex grid cells can map to hippocampal place cells by competitive learning. Network. 2006;17(4):447–65. DOI: 10.1080/09548980601064846.
  21. Si B, Treves A. The role of competitive learning in the generation of DG fields from EC inputs. Cognitive Neurodynamics. 2009;3(2):177–87. DOI: 10.1007/s11571-009-9079-z.
  22. Savelli F, Knierim JJ. Hebbian analysis of the transformation of medial entorhinal grid-cell inputs to hippocampal place fields. Journal of Neurophysiology. 2010;103(6):3167–83. DOI: 10.1152/jn. 00932.2009.
  23. Danjo T, Toyoizumi T, Fujisawa S. Spatial representations of self and other in the hippocampus. Science. 2018;359(6372):213-218. DOI: 10.1126/science.aao3898.
  24. Lian Y, Burkitt AN. Learning spatiotemporal properties of hippocampal place cells. eNeuro. 2022;9(4):ENEURO.0519-21.2022. DOI: 10.1523/ENEURO.0519-21.2022.
  25. Tsukerman VD, Cheshkov GN. Fundamentals of nonlinear dynamics of sensory perception. I. Phase coding in oscillatory networks. Neurocomputers: development, application. 2002;(7–8): 65–72.
  26. Tsukerman VD. Mathematical model of phase coding of events in the brain. Mathematical biology and bioinformatics. 2006;1(1):97–107. DOI: 10.17537/2006.1.97.
  27. Tsukerman VD, Eremenko ZS, Karimova OV, Kulakov SV, Sazykin AA. Cognitive neurodynamics of two strategies of navigation behavior of organisms. Izvestiya VUZ. Applied Nonlinear Dynamics. 2011;19(6):96–108. DOI: 10.18500/0869-6632-2011-19-6-96-108.
  28. Tsukerman VD, Kharybina ZS, Kulakov SV. Mathematical model of spatial encoding in the hippocampal formation. II. Neurodynamic correlates of mental trajectories and the problem of decision making. Mathematical biology and bioinformatics. 2014;9(1):216–256. DOI: 10.17537/ 2014.9.216.
  29. Tsukerman VD. Towards creative cognition, the creative principles of relational neural networks with even cyclic inhibition. In: Proceedings of the VII All-Russian Conference. Nonlinear dynamics in cognitive research 2021, Nizhny Novgorod, September 20–24, 2021. Nizhny Novgorod: IPFRAN; 2021. P. 186–189.
  30. Mur-Artal R, Montiel JMM, Tardos JD. ORB-SLAM: A Versatile and Accurate Monocular SLAM System. IEEE Transactions on Robotics. 2015;31(5):11471163. DOI: 10.1109/TRO.2015.2463671.
  31. Quigley M, Conley K, Gerkey B, Faust J, Foote T, Leibs J, Wheeler R, Ng A. ROS: an open-source Robot Operating System. ICRA Workshop on Open Source Software. 2009;3(3.2):5.
  32. Ball D, Heath S, Wiles J, Wyeth G, Corke P, Milford M. OpenRatSLAM: an open source brain based SLAM system. Autonomous Robots. 2013;34:149–176. DOI: 10.1007/s10514-012-9317-9.
  33. Samsonovich A, McNaughton BL. Path integration and cognitive mapping in a continuous attractor neural network model. The Journal of Neuroscience. 1997;17(15):5900–5920. DOI: 10.1523/ jneurosci.17-15-05900.1997.
  34. Rublee E, Rabaud V, Konolige K, Bradski GR. ORB: An efficient alternative to SIFT or SURF. In: Proceedings of the 2011 International Conference on Computer Vision, ICCV 2011. Barcelona, Spain, November 6–13, 2011. P. 564–2571.
  35. Triggs B, McLauchlan PF, Hartley RI, Fitzgibbon AW. Bundle Adjustment — A Modern Synthesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds) Vision Algorithms: Theory and Practice. IWVA 1999. Lecture Notes in Computer Science, vol. 1883. Berlin, Heidelberg: Springer; 2000. P. 298– 372. DOI: 10.1007/3-540-44480-7_21.
  36. Galvez-Lopez D, Tardos JD. Bags of Binary Words for Fast Place Recognition in Image Sequences. IEEE Transactions on Robotics. 2012;28(5). P. 1188–1197. DOI: 10.1109/TRO.2012.2197158.
  37. Horn BK. Closed-form solution of absolute orientation using unit quaternions. Journal of the Optical Society of America A. 1987;4(4):629–641. DOI: 10.1364/josaa.4.000629.
  38. Geiger A, Lenz P, Stiller C, and Urtasun R. Vision meets robotics: the KITTI dataset. The International Journal of Robotics Research. 2013;32(11):1231–1237. DOI: 10.1177/02783 64913491297.
  39. Yu F, Wu Y, Ma S, Xu M, Li H, Qu H, Song C, Wang T, Zhao R, Shi L. Brain-inspired multimodal hybrid neural network for robot place recognition. Sci Robot. 2023;8(78). DOI: 10.1126/scirobotics. abm6996.
  40. Zhang H, Rich PD, Lee AK, Sharpee TO. Hippocampal spatial representations exhibit a hyperbolic geometry that expands with experience. Nature Neuroscience. 2023;26(1):131–139. DOI: 10.1038/s41593-022-01212-4.
Received: 
07.11.2023
Accepted: 
13.02.2024
Available online: 
27.05.2024