For citation:
Karavaev A. D., Ryzhkov A. B., Kazakov V. P. Birth and death of fractal tore in the Belousov - Zhabotinsky reaction model. Izvestiya VUZ. Applied Nonlinear Dynamics, 2001, vol. 9, iss. 1, pp. 89-100. DOI: 10.18500/0869-6632-2001-9-1-89-100
Birth and death of fractal tore in the Belousov - Zhabotinsky reaction model
The mechanism of birth and destruction of chaotic toroidal attractor — fractal tore — is investigated for the 11—stage Belousov — Zhabotinsky reaction model. It is revealed, that fractal tore emerges as а result of period—doubling bifurcations cascade of а resonant state оп torus, and disappears through type I intermittency. Constructed bifurcation diagram shows, that fractal toris exist in a wide enough range, where resonant states, fractal toris and areas of intermittency appear conformingly in turn. It gives the basis to believe, that observed model dynamics, as the Belousov — Zhabotinsky reaction itself, involves two fundamental frequencies, and that the evolution of described regimes occurs on torus upon general tendency of rotation number to reduction.
- Field R, Burger M, editors. Fluctuations and traveling waves in chemical systems.Moskow: Mir, 1988. 720 p.
- Argoul F, Arneodo А, Richetti P. Roux JC, Swinney HL. Chemical chaos: from hints 10 confirmation. Acc. Chem. Res. 1987;20(12):436–442.
- Schuster G. Ceterministic Chaos. Moscow: Mir, 1988. 240 p.
- Vidal C, Pacault A, editors. Nonlinear Phenomena in Chemical Dynamics. Berlin: Springer-Verlag; 1981.
- Argoul F, Arneodo А, Richertti Р, Roux JC. From quasiperiodicity to chaos in the Belousov-Zhabotinskii reaction. I. Experiment. J. Chem. Phys. 1987;86(6):3325. DOI: 10.1063/1.452751.
- Argoul F, Arneodo А, Richetti P. J. Dynamique symbolique dans lа reaction de Belousov-Zhabotinskii: une illustration experimentale le lа theorie de Shil’nikov des orbites homoclines. J. Chim. Phys. 1987;84(11-12):1367.
- Richetti P, Roux JC, Argoul F, Arneodo A. From quasiperiodicity to chaos in the Belouso-Zhabotinskii reaction. II. Modeling and theory. J. Chem. Phys. 1987;86(6):3339–3356. DOI: 10.1063/1.451992.
- Noskov OB, Karavaev AD, Spivak CH, Kazakov VP. Modeling of complex dynamics of the Belousov-Zhabotinsky reaction: the crucial role of fast variables. Kinetics and catalysis. 1992;33(3):704–712.
- Noskov OV, Karavaev AD, Kazakov VP, Spivak SI. Chaos in simulated Belousov-Zhabotinsky Reaction. Mend. Commun. 1994;4:82. DOI: 10.1038/s41598-020-77874-6.
- Noskov OV, Karavaev AD, Kazakov VP, Spivak SI. Quasiperiodic to bursting oscillations transition in thе model оf the Belousov-Zhabotinsky reaction. Mend. Commun. 1997;1:27.
- Karavaev AD, Ryzhkov AB, Noskov OB, Kazakov VP. Observation of a fractal torus in the Belousov-Zhabotinsky reaction model. Moskow: DAN USSR. 1998;363(1):71.
- Aronson DG, Chory MA, Най GR, МсСейее RP. Bifurcations from аn invariant circle for two-parameter families of maps of the plane: computer-assisted study. Commun. Math. Phys. 1982;83(3):303. DOI: 10.1007/BF01213607.
- Ruoff P, Noyes RM. An amplified oregonator model simulating alternative excitabilities, transitions in types of oscillations, and temporary bistability in a closed system. J. Chem. Phys. 1986;84(3):1413–1423. DOI: 10.1063/1.450484.
- Novikov EA, Golushko ML, Shitiov YA. Approximation оf Jacobi matrix in the (m,k) - method оf order three. Advanses in Modeling & Analysis. USA: AMSE Press. 1995;28(3):19.
- Malinetsky GG, Potapov AB. On Calculation of Dimensions of Strange Attractors. Moscow: Prepr. IPM AS. 1987.
- Malinetsky GG, Potapov AB. About calculation of dimensions of strange attractors. Zhurnal. comput. matem. i matem. phys. 1988;28(7):1021–1037.
- Wolf А, Swift JB, Swinney HL, Vastano JА. Determining Lyapunov exponents from а time series. Phisica D. 1985;16(3):285–317. DOI:10.1016/0167-2789(85)90011-9.
- Ryzhkov AB, Noskov OB, Karavaev AD, Kazakov VP. Stationaries and bifurcations of the Belousov-Zhabotinsky reaction. Mat. modeling. 1998;10(2):71.
- Anishchenko BC, Vadivasova TE, Astakhov VV. Nonlinear dynamics of chaotic and stochastic systems. Saratov: Izd. of Saratov University, 1999.
- Noskov OB, Karavaev AD, Kazakov VN. Homoclinics in the model of the Belousov-Zhabotinsky reaction. Moskow: DAN USSR. 1997;353(6):774-777.
- 495 reads