ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Grishin S. V., Dmitriev B. S., Zharkov Y. D., Manyshev R. A., Skorokhodov V. N. Chaotic microwave pulse generation in wideband spin­wave and vacuum oscillators of chaos under external periodical influence. Izvestiya VUZ. Applied Nonlinear Dynamics, 2012, vol. 20, iss. 5, pp. 137-155. DOI: 10.18500/0869-6632-2012-20-5-137-155

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 107)
Language: 
Russian
Article type: 
Proceedings
UDC: 
621.373.9, 621.318.124

Chaotic microwave pulse generation in wideband spin­wave and vacuum oscillators of chaos under external periodical influence

Autors: 
Grishin Sergej Valerevich, Saratov State University
Dmitriev Boris Savelevich, Saratov State University
Zharkov Yurij Dmitrievich, Saratov State University
Manyshev Roman Aleksandrovich, Saratov State University
Skorokhodov Valentin Nikolaevich, Saratov State University
Abstract: 

The non-autonomous generation of chaotic microwave pulses in the wideband chaos oscillators is experimentally investigated. Nonlinearity of a spin-wave transmission line is a cause of chaotic dynamics of the spin-wave chaos oscillator and nonlinearity of a TWT amplifier is a cause of chaotic dynamics of the other chaos oscillator. It is shown, that in both cases, the generation of chaotic microwave pulses is observed when an external pulsemodulated microwave signal has a certain power level and its carrier is detuned from a central frequency of a chaotic signal. However, in non-autonomous regime, the increase of integral power of a chaotic microwave signal in comparison with the autonomous regime is only observed in the spin-wave chaos oscillator. This effect is demonstrated by the change of pulse ratio of external microwave pulses. The three-wave parametric interaction of spin waves in a ferromagnetic film leading to the increase of amplitude of a chaotic signal in a non-stationary range in comparison with the stationary range is a cause of the increase of integral power of a chaotic pulse signal.

Reference: 
  1. Dmitriev AS, Panas AI. Dynamic Chaos. New Carriers of Information for Communication Systems. Moscow: Fizmatlit; 2002. 252 p. (in Russian).
  2. Koronovskii AA, Trubetskov DI, A.E. Khramov AE, editors. Methods of Nonlinear Dynamics and Chaos Theory in Problems of Ultra-High Frequency Electronics. Vol. 2. Non-Stationary and Chaotic Processes. Moscow: Fizmatlit; 2009. 392 p. (in Russian).
  3. Dmitriev AS, Kuzmin LV, Jurkin VJ. Ultrawideband wireless sensor networks based on chaotic radiopulses. Izvestiya VUZ. Applied Nonlinear Dynamics. 2009;17(4):64–78 (in Russian). DOI: 10.18500/0869-6632-2009-17-4-64-78.
  4. Atanov NV, Dmitriev AS, Efremova EV et al. Chaotic RF pulses generated by a periodically driven oscillator. Tech. Phys. Lett. 2006;32(8):645–646. DOI: 10.1134/S1063785006080013.
  5. Pikovsky A, Rosenblum M, Kurths Y. Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge: Cambridge University Press; 2001. 411 p. DOI: 10.1017/CBO9780511755743.
  6. Anishchenko VS, Astakhov VV, Vadivasova TE, Strelkova GI. Synchronization of Regular, Chaotic and Stochastic Oscillations. Moscow-Izhevsk: Scientific Publishing Center «Regular and Chaotic Dynamics»; 2008. 144 p. (in Russian).
  7. Dmitriev BS, Zharkov JD, Skorohodov VN, Genshaft AM. Synchronization of chaotic oscillation by the way of chaos suppression in klystron active oscillator by external harmonic signal. Izvestiya VUZ. Applied Nonlinear Dynamics. 2007;15(3):52–57 (in Russian). DOI: 10.18500/0869-6632-2007-15-3-52-57.
  8. Dmitriev BS, Zharkov YD, Skorokhodov VN. A method for generating high-power chaotic radio pulses for direct chaotic communication systems. Patent for invention, RF. No. 2349027. 2009. Bulletin No. 7 (in Russian).
  9. Dmitriev BS, Zharkov YD, Klokotov DV et al. Experimental study of complex dynamics in a delayed-feedback multiple-cavity klystron self-oscillator. Tech. Phys. 2003;48(7):901–905. DOI: 10.1134/1.1593198.
  10. Dmitriev BS, Zharkov JD, Skorohodov VN, Birjukov AA. Generation of chaotic radio-frequency pulses using klystron active oscillator with delayed feedback. Izvestiya VUZ. Applied Nonlinear Dynamics. 2006;14(4):36–42 (in Russian). DOI: 10.18500/0869-6632-2006-14-4-36-42.
  11. Myasin EA, Kislov VY, Bogdanov EV. Method for generating electromagnetic noise oscillations. AS No. 1125735. 1984. Bulletin No. 43 (in Russian).
  12. Anisimova YV, Vorontsov GM, Zalogin NN, Kislov VY, Myasin EA. Shumotron. Radio Engineering. 2000;(2):19–25 (in Russian).
  13. Kuznetsov S.P. Complex dynamics of oscillators with delayed feedback (review). Radiophys. Quantum Electron. 1982;25(12):996–1009. DOI: 10.1007/BF01037379.
  14. Zalogin NN, Kislov VV. Broadband Chaotic Signals in Radio Engineering and Information Systems. Moscow: Radiotekhnika; 2006. 208 p. (in Russian).
  15. Demidov VE, Kovshikov NG. Some special features of the transition to chaos in the self-modulation of surface spin waves. JETP Letters. 1997;66(4):261–265. DOI: 10.1134/1.567464.
  16. Demidov VE, Kovshikov NG. Stochastic generation accompanying parametric excitation of spin waves in yttrium iron garnet films. Tech. Phys. Lett. 1998;24(4):274–276. DOI: 10.1134/1.1262081.
  17. Demidov VE, Kovshikov NG. Mechanism for the appearance and randomization of the self-modulation of high-intensity spin waves. Tech. Phys. 1999;44(8):960–963. DOI: 10.1134/1.1259413.
  18. Wu M, Kalinikos BA, Patton CE. Self-generation of chaotic solitary spin wave pulses in magnetic film active feedback rings. Phys. Rev. Lett. 2005;95(23):237202. DOI: 10.1103/PhysRevLett.95.237202.
  19. Grishin SV, Grishin VS, Hramov AE, Sharaevskii YP. Wideband chaotic oscillation in a self-oscillatory system with a nonlinear transmission line on magnetostatic waves. Tech. Phys. 2008;53(5):620–628. DOI: 10.1134/S1063784208050150.
  20. Kondrashov AV, Ustinov AB, Kalinikos BA, Benner H. Chaotic microwave self-generation in active rings based on ferromagnetic films. Tech. Phys. Lett. 2008;34(6):492–494. DOI: 10.1134/S1063785008060126.
  21. Hagerstrom AM, Tong W, Wu M, Kalinikos BA, Eykholt R. Excitation of chaotic spin waves in magnetic film feedback rings through three-wave nonlinear interaction. Phys. Rev. Lett. 2009;102(20):207202. DOI: 10.1103/PhysRevLett.102.207202.
  22. Wu M, Hagerstrom AM, Eykholt R, Kondrashov A, Kalinikos BA. Excitation of chaotic spin waves through modulation instability. Phys. Rev. Lett. 2009;102(23):237203. DOI: 10.1103/PhysRevLett.102.237203.
  23. Kondrashov AV, Ustinov AB, Kalinikos BA. Controlled chaotic microwave generation under conditions of four-wave parametric interaction of surface spin waves. Tech. Phys. Lett. 2010;36(3):224–227. DOI: 10.1134/S1063785010030089.
  24. Beginin EN, Grishin SV, Sharaevskii YP. Influence of the amplitude and phase nonlinearity of a spin-wave delay line on the wideband chaotic microwave generation. Tech. Phys. Lett. 2010;36(4):325–328. DOI: 10.1134/S1063785010040115.
  25. Grishin SV, Zar’kova EV, Sharaevskii YP. Generation of chaotic microwave pulses in broadband self-oscillating ring system with ferromagnetic film under the action of external pulse-modulated microwave signal. Tech. Phys. Lett. 2011;37(3):237–240. DOI: 10.1134/S1063785011030060.
  26. Hagerstrom A, Wu M, Eykholt R, Kalinikos BA. Tuning of chaotic surface spin waves in a magnetic-film feedback ring via the ring gain. Phys. Rev. B. 2011;83(10):104402. DOI: 10.1103/PhysRevB.83.104402.
  27. Grishin SV, Sharaevskii YP, Nikitov SA, Beginin EN, Sheshukova SE. Self-generation of chaotic dissipative soliton trains in active ring resonator with 1-D magnonic crystal. IEEE Trans. Magn. 2011;47(10):3716–3719. DOI: 10.1109/TMAG.2011.2158293.
  28. Dudko GM, Kozhevnikov AV, Filimonov YA. Stochastization of the signal of magnetostatic waves in ferrite films. In: Abstracts of the XV All-Union Seminar Gyromagnetic Electronics and Electrodynamics. Kuibyshev; 1987. P. 21 (in Russian).
  29. Kozhevnikov AV. Influence of parametric spin waves on the dispersion and damping of magnetostatic waves in yttrium iron garnet films. Extended abstract of PhD thesis. Saratov: Saratov Branch of Institute of Radio Engineering and Electronics named after V. A. Kotelnikov RAS; 2011. 18 p. (in Russian).
  30. Mednikov AM. Nonlinear effects in the propagation of surface spin waves in YIG films. Soviet Physics, Solid State. 1981;23(1):242–245 (in Russian).
  31. Kazakov GT, Kozhevnikov AV, Filimonov YA. The effect of parametrically excited spin waves on the dispersion and damping of magnetostatic surface waves in ferrite films. J. Exp. Theor. Phys. 1999;88(1):174–181. DOI: 10.1134/1.558780.
  32. Grishin SV, Sharaevsky YP. Emission of noise-like spin wave packets in the presence of three-magnon decay processes and the kinetic instability of waves in a ferromagnetic film. JETP Letters. 2009;89(2):53–57. DOI: 10.1134/S0021364009020015.
Received: 
15.06.2009
Accepted: 
04.09.2009
Published: 
31.01.2013
Short text (in English):
(downloads: 93)