For citation:
Yanovsky V. V., Najdenov S. V., Kurilo A. V. Chaotic modes of asymmetric circular billiard with beams reflection and refraction. Izvestiya VUZ. Applied Nonlinear Dynamics, 2007, vol. 15, iss. 1, pp. 42-60. DOI: 10.18500/0869-6632-2007-15-1-42-60
This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 170)
Language:
Russian
Heading:
Article type:
Article
UDC:
514.8; 517.938; 530.182
Chaotic modes of asymmetric circular billiard with beams reflection and refraction
Autors:
Yanovsky Vladimir Vladimirovich, Institute of Monocrystals of NAS of Ukraine
Najdenov Sergej Vjacheslavovich, Institute of Monocrystals of NAS of Ukraine
Kurilo Artem Viktorovich, Institute of Monocrystals of NAS of Ukraine
Abstract:
The paper studies the chaotic dynamics in circular asymmetric billiard with beams reflection and refraction. Phase dynamics is characterized by a variety of dynamics modes, which is connected with the effect of traditional chaotization mechanisms as well as with the complicacy of allowable motion laws. In the multisheet symmetric phase space, the circular billiard reconstructions have been analysed its asymmetry degrees changes.
Key words:
Reference:
- Krylov NS. Works on the foundations of statistical physics. Moscow: Publ. House of the USSR Academy of Science; 1950.
- Birkhoff D. Dynamical systems. Ischewsk: Publishing House “Udmurt University”; 1999.
- Benettin G, Strelcyn JM. Numerical experiments on the free motion of a point mass moving in a plane convex region: Stochastic transition and entropy. Phys. Rev. 1978;A 17(2):773–785.
- Berry MV. Regularity and chaos in classical mechanics, illustrated by three deformations of a circular billiard. European J. Phys. 1981;2(2):91–102.
- Lazutkin VF. Convex billiard and eigenfunctions of the Laplace operator. Leningrad: LSU; 1981.
- Zaslavskii GM, Sagdeev RZ. Introduction to Nonlinear Physics. Moscow: Nauka; 1988.
- Gutzwiller MC. Chaos in Classical and Quantum Mechanics. New York: Springer; 1990.
- Loskutov AY, Ryabov AB, Akinshin LG. Mechanism of Fermi acceleration in dispersing billiards with time-dependent boundaries. J. Exp. Theor. Phys. 1999;89:966–974. DOI: 10.1134/1.558939.
- Proceedings of the International Conference on Classical and Quantum Billiards. J. Stat. Phys. 1996;83(1-2):1.
- Sinai YaG. On the foundations of the ergodic hypothesis for a dynamical system of statistical mechanics. Dokl. Akad. Nauk SSSR. 1963;153(6):1261–1264.
- Bunimovich LA. Decay of correlations in dynamical systems with chaotic behavior. Journal of Experimental and Theoretical Physics. 1985;89:1452–1471.
- Bunimovich LA. Conditions of stochasticity of two-dimensional billiards. Chaos. 1991;1:187–193.
- Baryakhtar VG, Yanovsky VV, Naydenov SV, Kurilo AV. Chaos in composite billiards. Journal of Experimental and Theoretical Physics. 2006;103(2):292–302. DOI: 10.1134/S1063776106080127.
- Hentschel M, Richter K. Quantum chaos in optical systems: The annular billiard. Phys. Rev. 2002;E 66;056207. DOI: 10.1103/PhysRevE.66.056207.
- Blumel R, Antonsen TM, Georgeot B, Ott E, Prange RE. Ray splitting and quantum chaos. Phys. Rev. E. 1996;53(4):3284–3302.
- Hentschel M, Richter K. Quantum chaos in optical systems: The annular billiard. Phys. Rev. 2002;E 66;056207. DOI: 10.1103/PhysRevE.66.056207.
- Doron E, Frischat SD. Semiclassical description of tunneling in mixed systems: case of the annular billiard. Phys. Rev. Lett. 1995;75:3661–3664. DOI: 10.1103/PhysRevLett.75.3661.
- de Carvalho RE, Souza FC, Leonel ED. Fermi acceleration on the annular billiard. Phys. Rev. E. 2006;73:066229. DOI: 10.1103/PhysRevE.73.066229.
- Naydenov SV, Yanovsky VV. Geometrical nonlinear dynamics features of systems with elastic reflections. I. Billiard and its involution. Izvestiya VUZ. Applied Nonlinear Dynamics. 2002;10(1-2):113–126.
- Naydenov SV, Yanovskii VV, Tur AV. Problem of a billiard in symmetric coordinates. JETP Letters. 2002;75(8):426–431.
- Chirikov BV. Research Concerning the Theory of Nonlinear Resonance and stochasticity. Novosibirsk: Preprint, Institute of Nuclear Physics. 1969;267.
Received:
14.06.2006
Accepted:
23.10.2006
Published:
28.02.2007
Journal issue:
Short text (in English):
(downloads: 86)
- 1844 reads