For citation:
Anfinogentov V. G. Chaotic oscillation in the electron beam with virtual cathode. Izvestiya VUZ. Applied Nonlinear Dynamics, 1994, vol. 2, iss. 5, pp. 69-83.
Chaotic oscillation in the electron beam with virtual cathode
Nonlinear oscillations of the electron beam with virtual cathode in the Pierce diode are studied by numerical simulation (PIC method). Different dynamical states including chaotic oscillations of the electron beam are recognized. Quantatively (correlation dimension and greatest Lapunov exponent) and qualitatively (autocorrelation function and unstable periodic orbits) characteristics of chaotic oscillations are obtained. Physical processes in the diode are investigated and it was shown that the second region reflecting the electrons may appear in the beam. This region was called the secondary virtual cathode. It was discovered that one mechanism of beam chaotic behavior appearence was connected with the nonlinear interaction between the virtual cathodes.
- Pierce J. Limiting currents in electron beam in presence of ions. J. Appl. Phys. 1944;15:721-726. DOI: 10.1063/1.1707378
- Kuhn S. Linear longitudional oscillations in collisionless plasma diodes with thin sheaths. Part II. Application to an extended Pierce-type problem. Phys. Fluids. 1984;27:1834-1851. DOI: 10.1063/1.864796
- Crystal TL, Kuhn S. Particle simulations of the low-alfa Pierce diode. Phys. Fluids. 1985;28:2116-2124. DOI: 10.1063/1.865392
- Godfrey BB. Oscillatory nonlinear electron flow in Pierce diode. Phys. Fluids. 1987;30:1553-1560. DOI: 10.1063/1.866217
- Lawson WS. The Pierce diode with an external circuit. II. Chaotic behaviour. Phys. Fluids В. 1989;1:1493-1501. DOI: 10.1063/1.859199
- Anfinogentov VG, Trubetskov DI. Chaotic oscillations in the hydrodynamic model of the Pierce diode. Sov. J. Comm. Tech. Electron. 1992;37:2251.
- Brandt Н.Е. The turbutron. IEEE Trans. on Plasma Sci. 1985;PS—13(6):513-519. DOI: 10.1109/TPS.1985.4316466
- Privezentsev AP, Sablin NI, Fomenko GP. Nonlinear dynamics of a virtual cathode in a high-frequency field. Sov. J. Comm. Tech. Electron. 1990;35:832.
- Birdsall C.K., Langdon A.B. Plasma Physics via Computer Simulation. N.Y.: McGraw - Hill; 1985. 479 p.
- Takens F. Detecting strange attractors in turbulence. In: Rand D, Young LS, editors. Dynamical Systems and Turbulence. Warwick 1980. Lecture Notes in Mathematics. Vol. 898. Berlin: Springer; 1981. P. 366-381. DOI: 10.1007/BFb0091924
- Pomeau Y, Manneville P. Intermittent transition to turbulence in dissipative dynamical systems. Comm. Math. Phys. 1980;74:189-197. DOI: 10.1007/bf01197757
- Crawford JD, Cary JR. Decay of correlations in a chaotic measurepresersing transformation. Physica D. 1983;6(2):223-232. DOI: 10.1016/0167-2789(83)90007-6
- Benettin G, Galgani L, Strelcyn JM. Kolmogorov entropy and numerical experiments. Phys. Rev. A. 1976;14(6):2338-2345. DOI: 10.1103/PhysRevA.14.2338
- Grassberger P, Procaccia J. On the characterization of strange attractors. Phys. Rev. Lett. 1983;50(5):346-349. DOI: 10.1103/PhysRevLett.50.346
- Farmer JD. Dimension, fractal measure and chaotic dynamics. In: Haken H, editor. Evolution of Order and Chaos. Springer Series in Synergetics. Vol. 17. Berlin: Springer; 1982. P. 228-246. DOI: 10.1007/978-3-642-68808-9_20
- Cvitanovic P. Invariant measurement of strange sets in terms of cycles. Phys. Rev. Lett. 1988;61(1):27-30. DOI: 10.1103/PhysRevLett.61.27
- Lathrop DP, Kostelich EJ. Characterization of an experimental strange attractors by unstable orbits. Phys. Rev. A. 1989;40(7):4028-4031. DOI: 10.1103/PhysRevA.40.4028
- 1534 reads