ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Manenkov A. B. Characteristics of the nonlinear left­-handed waveguide. Izvestiya VUZ. Applied Nonlinear Dynamics, 2010, vol. 18, iss. 6, pp. 93-105. DOI: 10.18500/0869-6632-2010-18-6-93-105

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 475)
Article type: 
621.372; 537.86; 537.87

Characteristics of the nonlinear left­-handed waveguide

Manenkov Aleksandr Bencionovich, P.L. Kapitza Institute for Physical Problems of Russian Academy of Sciences

The modes of the planar dielectric waveguide made from nonlinear metamaterials with both negative permittivity and permeability are investigated. The dependencies of the propagation coefficients of the guided mode on the transmitted power are studied. The fields distributions are calculated for the systems with variable permittivity and permeability profiles. It is shown that in such systems a drastic increase in the field magnitudes may occur.

  1. Smith DR, Padilla WJ, Vier DC, Nemat-Nasser SC, Schultz S. Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 2000;84(18):4184–4187. DOI: 10.1103/PhysRevLett.84.4184.
  2. Ruppin R. Surface polaritons of a left-handed medium. Phys. Lett. A. 2000;277(1):61–64. DOI: 10.1016/S0375-9601(00)00694-0.
  3. Vendik IB, Vendik OG, Odit MA. An isotropic metamaterial formed with ferroelectric ceramic spherical inclusions. Physics of the Solid State. 2009;51(8):1590–1594. DOI: 10.1134/S1063783409080113.
  4. Shadrivov IV, Sukhorukov AA, Kivshar YuS. Guided modes in negative-refractive-index waveguides. Phys. Rev. E. 2003;67:057602. DOI: 10.1103/PhysRevE.67.057602.
  5. Shadrivov IV, Sukhorukov AA, Kivshar YuS, Boardman AD, Egan P. Nonlinear surface waves in left-handed materials. Phys. Rev. E. 2004;69:016617. DOI: 10.1103/PhysRevE.69.016617.
  6. He Y, Cao Z, Shen Q. Guided optical modes in asymmetric left-handed waveguides. Optics Comm. 2005;245:125–135. DOI: 10.1016/j.optcom.2004.09.067.
  7. Bordman AD, Egan P. Novel nonlinear surface and guided TE waves in asymmetric LHM waveguides. J. Opt. A. Pure Appl. Opt. 2009;11:114032. DOI: 10.1088/1464-4258/11/11/114032.
  8. Ginzburg VL. The Propagation of Electromagnetic Waves in Plasmas. Oxford: Pergamon; 1970.
  9. Landau LD, Lifshitz EM. Electrodynamics of Continuous Media. Oxford: Pergamon Press, 1984.
  10. Manenkov AB. The leaky modes of multilayered waveguide with nonlinear dielectrics. Izvestiya VUZ. Applied Nonlinear Dynamics. 2008;16(4):20–32 (in Russian). DOI: 10.18500/0869-6632-2008-16-4-20-32.
  11. Manenkov AB. Waveguide with thin nonlinear walls. Izvestiya VUZ. Applied Nonlinear Dynamics. 2009;17(6):3–16 (in Russian). DOI: 10.18500/0869-6632-2009-17-6-3-16.
  12. Nikolsky VV. Variational methods for internal problems of electrodynamics. Moscow: Nauka; 1967. 460 p. (in Russian).
  13. Katsenelenbaum BZ. The Theory of Irregular Waveguides with Slowly Changed Parameters. Moscow: USSR’ Academy of Sciences; 1961. 216 p. (in Russian).
  14. Manenkov AB. The excitation of open homogeneous waveguides. Radiophys. Quantum Electron. 1970;13:578–586. DOI: 10.1007/BF01030694.
  15. Kahaner D, Mouler K, Nash S. Numerical methods and software. Moscow: Mir; 1998. (in Russian).
  16. Ryabenky VS. Introduction to computational mathematics. Moscow: Fizmatlit; 1994. (in Russian).
  17. Weinstein LA. Electromagnetic waves. Moscow: Radio and Communications; 1982. (in Russian).
  18. Tricomi F. Differential equations. Moscow: Foreign lit.; 1962. (in Russian).
  19. Arfken G. Mathematical Methods for Physicists. New-York: Academic Press; 1966.
  20. Mandelstam LI. Lectures on optics, relativity theory and quantum mechanics. Moscow: Nauka; 1972. (in Russian).
Short text (in English):
(downloads: 104)