ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Kim S., Jalnine A. Y., Lim W., Kuznetsov S. P. Characterization оf thе parameter-mismatching and noise effect оn weak synchronization. Izvestiya VUZ. Applied Nonlinear Dynamics, 2003, vol. 11, iss. 2, pp. 81-86. DOI: 10.18500/0869-6632-2003-11-2-81-86

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 0)
Language: 
English
Article type: 
Article
UDC: 
517.9

Characterization оf thе parameter-mismatching and noise effect оn weak synchronization

Autors: 
Kim Sang-Yoon, Kangwon National University
Jalnine Aleksej Yurevich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Lim Woochang, Kangwon National University
Kuznetsov Sergey Petrovich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Abstract: 

We investigate the effect of noise and parameter mismatching оn the loss оf chaos synchronization in coupled one-dimensional maps. Due to existence of positive local transverse Lyapunov exponents, the weakly stable synchronous chaotic attractor demonstrates sensitivity with respect to variation of the mismatching parameter оr noise intensity. In order to characterize such parameter and noise sensitivity quantitatively, we introduce new quantifiers, called the parameter sensitivity exponent and noise sensitivity exponent. The values of these exponents are determined by local stability multipliers of the chaotic trajectories, and by the properties of the noise signal (for the noise sensitivity exponent). For the case оf bounded uniform noise, the values of the parameter sensitivity exponent and noise sensitivity exponent coincide. In terms of these exponents, we characterize the effect of parameter-mismatching and noise оn the intermittent bursting and basin riddling occurring in the regime of weak synchronization.

Key words: 
Acknowledgments: 
S.Y.K. thanks Prof. Ott for hospitality and support during the visit to University оf Maryland. This work was supported by the Korea Research Foundation (Grant №. KRF-2001-013-D00014). A.J. and S.P.K. acknowledge support from the Russian Foundation оf Basic Research (Grant № 00-02-17509) and the CRDF (Grant № REC-006).
Reference: 
  1. Fujisaka Н, Yamada Т. Stability theory оf synchronized motion in coupled-oscillator systems. Prog. Theor. Phys. 1983;69(1):32–47. DOI: 10.1143/PTP.69.32.
  2. Lai Y-C, Grebogi C, Yorke JA, Venkataramani SC. Riddling bifurcation in chaotic dynamical systems. Phys. Rev. Lett. 1996;77(1):55–58. DOI: 10.1103/PhysRevLett.77.55.
  3. Kim S-Y, Lim W. Mechanism for the riddling transition in coupled chaotic systems. Phys. Rev. Е. 2001;63(2):026217. DOI: 10.1103/PhysRevE.63.026217.
  4. Jalnine А, Kim S-Y. Characterization оf the parameter-mismatching effect on the loss of chaos synchronization. Phys. Rev. E. 2002;65(2):026210. DOI: 10.1103/PhysRevE.65.026210.
  5. Kim S-Y, Lim W, Jalnine А, Kuznetsov SP. Characterization оf the noise effect оп weak synchronization. Phys. Rev. E. 2003;67(1):016217. DOI: 10.1103/PhysRevE.67.016217.
  6. Kim S-Y, Lim W, Kim Y. Effect оf parameter mismatch and noise оf weak synchronization. Prog. Theor. Phys. 2002;107(2):239–252. DOI: 10.1143/PTP.107.239.
Received: 
18.11.2002
Accepted: 
16.12.2002
Available online: 
16.11.2023
Published: 
30.05.2003