ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Dumskij D. V., Pavlov A. N., Tupicyn A. N., Makarov V. V. Classification of neuronal action potentials using wavelet-transform. Izvestiya VUZ. Applied Nonlinear Dynamics, 2005, vol. 13, iss. 6, pp. 77-98. DOI: 10.18500/0869-6632-2005-13-5-77-98

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 182)
Article type: 

Classification of neuronal action potentials using wavelet-transform

Dumskij Dmitrij Viktorovich, Saratov State University
Pavlov Aleksej Nikolaevich, Saratov State University
Tupicyn Anatolij Nikolaevich, Saratov State University
Makarov Vladimir Vladimirovich, Saratov State University

In this paper, a comparative study of methods for classification of neuronal action potentials is performed, namely, the standard Principal Component Analysis (PCA) and techniques based on the wavelet-transform. It is shown that there are at least two cases when the wavelet-based approaches have advantages: 1) the presence of a small-scale structure in the shapes of spikes, and 2) the presence of slow noise of high intensity. It is stated that the quality of spike-sorting can be increased by signal’s filtering. The problem of choosing optimal wavelet-coefficients for spike classification is discussed. Proposed method is based on combination of the PCA and the wavelet-transform. Main idea of the method consists in the estimation of typical spike waveforms and in the use of those wavelet-coefficients that provide maximal distinctions between the chosen waveforms. The suggested approach allows us to reduce classification errors.

Key words: 
  1. Lewicki M. A review of methods for spike sorting: the detection and classification of neural potencials. Net. Com. Neu. Sys. 1998;9(4):R53–R78.
  2. Harris K, Henze D, Csicsvari J, Hirase H, Buzsaki G. Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements. J. Neurophysiol. 2000;84(1):401–414. DOI: 10.1152/jn.2000.84.1.401.
  3. Schmidt E. Computer separations of multi-unit neuroelectric data: a review. J. Neurosci. Methods. 1984;12(2):95–111. DOI: 10.1016/0165-0270(84)90009-8.
  4. Gray C, Maldonado P, Wilson M, McNaughton B. Tetrodes markedly improve the reliability and yield of multiple single-unit isolation from multi-unit recordings in cat striate cortex. J. Neurosci. Methods. 1995;63(1–2):43–54. DOI: 10.1016/0165-0270(95)00085-2.
  5. Eggermont J, Epping W, Aertsen A. Stimulus dependent neural correlations in the auditory midbrain of the grassfrog (Rana temporaria L.). Biol. Cybern. 1983;47(2):103–117. DOI: 10.1007/bf00337084.
  6. Salganicoff M, Sarna M, Sax L, Gerstein G. Unsupervised waveform classification for multi-neural recordings: a real-time, software based system. I. Algorithms and implementation. J. Neurosci. Methods. 1988;25(3):181–187. DOI: 10.1016/0165-0270(88)90132-X.
  7. Sarna M, Gochin P, Kaltenbach J, Salganicoff M, Gerstein G. Unsupervised waveform classification for multi-neuron recordings: a real-time, software based system. II. Performance comparison to other sorters. J. Neurosci. Methods. 1988;25(3):189–196. DOI: 10.1016/0165-0270(88)90133-1.
  8. Zouridakis G, Tam D. Multi-unit spike discrimination using wavelet transforms. Comput. Biol. Med. 1997;27(1):9–18. DOI: 10.1016/s0010-4825(96)00038-8.
  9. Hulata E, Segev R, Ben-Jacob E. A method for spike sorting and detection based on wavelet packets and Shannon’s mutual information. J. Neurosci. Methods. 2002;117(1):1–12. DOI: 10.1016/s0165-0270(02)00032-8.
  10. Letelier J, Weber P. Spike sorting based on discrete wavelet transform coefficients. J. Neurosci. Methods. 2000;101(2):93–106. DOI: 10.1016/S0165-0270(00)00250-8.
  11. Quian Quiroqa R, Nadasdy Z, Ben-Shaul Y. Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering. Neural Computation. 2004;16(8):1661–1687. DOI: 10.1162/089976604774201631.
  12. Kim K, Kim S. A wavelet-based method for action potential detection from extracellular neural signal recording with low signal-to-noise ratio. IEEE Trans. Biomed. Eng. 2003;50(8):999–1011. DOI: 10.1109/TBME.2003.814523.
  13. Simon W. The real-time sorting of neuro-electric action potentials in multiple unit studies Electroencephalogr. Clin. Neurophysiol. 1965;18:192–195. DOI: 10.1016/0013-4694(65)90029-5.
  14. Feldman J, Roberge F. Computer detection and analysis of neuronal spike sequences. Inform. 1971;9(3):185–197. DOI: 10.1080/03155986.1971.11731476.
  15. Dinning G. Real-time classification of multiunit neural signals using reduced feature sets. IEEE Trans. Biomed. Eng. 1981;28(12):804–812. DOI: 10.1109/tbme.1981.324679.
  16. Glaser E, Marks W. On-line separation of interleaved neuronal pulse sequences. In: Data Acquisition and Processing in Biology and Medicine. Vol. 5. Pergamon; 1968. P. 137–156.
  17. Gerstein G, Bloom M, Espinosa I, Evanczuk S, Turner M. Design of a laboratory for multineuron studies. IEEE Trans. Syst. Man Cybern. 1983;13(5):668–676. DOI: 10.1109/TSMC.1983.6313059.
  18. Press WH, Teukolsky SA, Vetterling WT, Flanney BP. Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press; 1992. 994 p.
  19. Burrus CS, Gopinath RA, Guo H. Introduction to Wavelets and Wavelet Transforms: A Primer. N.J: Prentice Hall; 1997. 288 p.
  20. Chui CK. Wavelets: A Mathematical Tool for Signal Analysis SIAM Monographs on Mathematical Modeling and Computation. Philadelphia, PA: SIAM; 1997. 206 p. DOI: 10.1137/1.9780898719727.
  21. Astaf’eva NM. Wavelet analysis: basic theory and some applications. Phys. Usp. 1996;39(11):1085–1108. DOI: 10.1070/PU1996v039n11ABEH000177.
Short text (in English):
(downloads: 115)