For citation:
Vlasenko D. V., Ushakov V. G., Zaikin A. A., Zakharov D. G. Comparison of ensemble and correlation graphs in the task of classifying brain states based on fMRI data. Izvestiya VUZ. Applied Nonlinear Dynamics, 2025, vol. 33, iss. 4, pp. 557-566. DOI: 10.18500/0869-6632-003164, EDN: PPZDBV
Comparison of ensemble and correlation graphs in the task of classifying brain states based on fMRI data
The study of functional brain networks that support cognitive processes is one of the central goals of modern neuroscience. Functional magnetic resonance imaging (fMRI) is widely used to obtain data on brain activity. However, the high dimensionality and dynamic nature of fMRI data makes their processing challenging. Network-based methods of data representation offer a promising approach to describe the brain as a network, where nodes correspond to brain regions and edges correspond to functional connections between them. This
allows us to further explore the topology of brain networks and their role in cognitive states. The purpose of this paper is to compare ensemble and correlation graphs in a brain state classification task based on functional magnetic resonance imaging (fMRI) data.
Methods. This paper presents a novel method for representing fMRI data in graph form based on ensemble learning. To demonstrate the effectiveness of the data representation method, we compared it with correlated graphs by applying a graph neural network to classify brain states.
Results and Conclusion. Our results showed that ensemble graphs lead to significantly more accurate and stable classification. The better classification performance suggests that using this method we are more efficient in identifying functional connections between brain regions during cognitive tasks.
- Heeger DJ, Ress D. What does fMRI tell us about neuronal activity Nat. Rev. Neurosci. 2002;3(2):142–151. DOI: 10.1038/nrn730.
- Logothetis NK. What we can do, and what we cannot do with fMRI. Nature. 2008;453(7197): 869–878. DOI: 10.1038/nature06976.
- Ramzan F, Khan MUG, Rehmat A, Iqbal S, Saba T, Rehman A, Mehmood Z. A deep learning approach for automated diagnosis and multiclass classification of Alzheimer’s disease stages using resting state fMRI and residual neural networks. J. Med. Syst. 2019;44(2):37. DOI: 10.1007/s10916- 019-1475-2.
- Arribas JI, Calhoun VD, Adali T. Automatic Bayesian classification of healthy controls, bipolar disorder, and schizophrenia using intrinsic connectivity maps from fMRI data. IEEE Transactions on Biomedical Engineering. 2010;57(12):2850–2860. DOI: 10.1109/TBME.2010.2080679.
- Luo Y, Alvarez TL, Halperin JM, Li X. Multimodal neuroimaging based prediction of adult outcomes in childhood-onset ADHD using ensemble learning techniques. Neuroimage: Clin. 2020;26:102238. DOI: 10.1016/j.nicl.2020.102238.
- Li X, Zhou Y, Dvornek N, Zhang M, Gao S, Zhuang J, Scheinost D, Staib LH, Ventola P, and Duncan JS. BrainGNN: Interpretable brain graph neural network for fMRI analysis. Med. Image Anal. 2021;74:102233. DOI: 10.1016/j.media.2021.102233.
- Wang J, Zuo X, He Y. Graph-based network analysis of resting-state functional MRI. Front. Syst. Neurosci. 2010;4:16. DOI: 10.3389/fnsys.2010.00016.
- Richiardi J, Eryilmaz H, Schwartz S, Vuilleumier P, Van De Ville D. Decoding brain states from fMRI connectivity graphs. Neuroimage. 2011;56(2):616–626. DOI: 10.1016/j.neuroimage. 2010.05.081.
- Takerkart S, Auzias G, Thirion B, Ralaivola L. Graph-based inter-subject pattern analysis of fMRI data. PLoS ONE. 2014;9(8):e104586. DOI: 10.1371/journal.pone.0104586.
- Saeidi M, Karwowski W, Farahani FV, Fiok K, Hancock PA, Sawyer BD, Christov-Moore L, Douglas PK. Decoding task-based fMRI data with graph neural networks, considering individual differences. Brain Sci. 2022;12(8):1094. DOI: 10.3390/brainsci12081094.
- Li X, Dvornek NC, Zhou Y, Zhuang J, Ventola P, Duncan JS. Graph neural network for interpreting task-fMRI biomarkers. In: Shen D, Liu T, Peters TM, Staib LH, Essert C, Zhou S, Yap P-T, Khan A, editors. Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. MICCAI 2019. Lecture Notes in Computer Science. Vol. 11768. Cham: Springer; 2019. P. 485–493. DOI: 10.1007/978-3-030-32254-0_54.
- Bessadok A, Mahjoub MA, Rekik I. Graph neural networks in network neuroscience. IEEE Trans. Pattern Anal. Mach. Intell. 2023;45(5):5833–5848. DOI: 10.1109/TPAMI.2022.3209686.
- Gorban AN, Tyukina TA, Pokidysheva LI, Smirnova EV. Dynamic and thermodynamic models of adaptation. Phys. Life Rev. 2021;37:17–64. DOI: 10.1016/j.plrev.2021.03.001.
- Ursino M, Ricci G, Magosso E. Transfer entropy as a measure of brain connectivity: A critical analysis with the help of neural mass models. Front. Comput. Neurosci. 2020;14:45. DOI: 10.3389/ fncom.2020.00045.
- Hlinka J, Palus M, Vejmelka M, Mantini D, Corbetta M. Functional connectivity in resting- state fMRI: Is linear correlation sufficient Neuroimage. 2011;54(3):2218–2225. DOI: 10.1016/ j.neuroimage.2010.08.042.
- Roebroeck A, Formisano E, Goebel R. Mapping directed influence over the brain using Granger causality and fMRI. Neuroimage. 2005;25(1):230–242. DOI: 10.1016/j.neuroimage.2004.11.017.
- Ganaie MA, Hu M, Malik AK, Tanveer M, Suganthan PN. Ensemble deep learning: A review. Engineering Applications of Artificial Intelligence. 2022;115:105151. DOI: 10.1016/j.engappai. 2022.105151.
- Mohammed A, Kora R. A comprehensive review on ensemble deep learning: Opportunities and challenges. Journal of King Saud University Computer and Information Sciences. 2023;35(2): 757–774. DOI: 10.1016/j.jksuci.2023.01.014.
- Galar M, Fernandez A, Barrenechea E, Bustince H, Herrera F. A review on ensembles for the class imbalance problem: Bagging-, boosting-, and hybrid-based approaches. IEEE Trans. Syst., Man, Cybern. C. 2012;42(4):463–484. DOI: 10.1109/TSMCC.2011.2161285.
- Nazarenko T, Whitwell HJ, Blyuss O, Zaikin A. Parenclitic and synolytic networks revisited. Front. Genet. 2021;12:733783. DOI: 10.3389/fgene.2021.733783.
- Elam JS, Glasser MF, Harms MP, Sotiropoulos SN, Andersson JL, Burgess GC, Curtiss SW, Oostenveld R, Larson-Prior LJ, Schoffelen JM, Hodge MR, Cler EA, Marcus DM, Barch DM, Yacoub E, Smith SM, Ugurbil K, Van Essen DC. The Human Connectome Project: A retrospective. Neuroimage. 2021;244:118543. DOI: 10.1016/j.neuroimage.2021.118543.
- Van Essen DC, Smith SM, Barch DM, Behrens TEJ, Yacoub E, Ugurbil K; WU-Minn HCP Consortium. The WU-Minn Human Connectome Project: An overview. Neuroimage. 2013;80: 62–79. DOI: 10.1016/j.neuroimage.2013.05.041.
- Vlasenko D, Zaikin A, Zakharov D. Ensemble_graphs__2024 [Data set]. Zenodo. 2024. DOI: 10.5281/zenodo.13764278.
- Barch DM, Burgess GC, Harms MP, Petersen SE, Schlaggar BL, Corbetta M, Glasser MF, Curtiss S, Dixit S, Feldt C, Nolan D, Bryant E, Hartley T, Footer O, Bjork JM, Poldrack R, Smith S, Johansen-Berg H, Snyder AZ, Van Essen DC; WU-Minn HCP Consortium. Function in the human connectome: Task-fMRI and individual differences in behavior. Neuroimage. 2013;80:169–189. DOI: 10.1016/j.neuroimage.2013.05.033.
- Glasser MF, Sotiropoulos SN, Wilson JA, Coalson TS, Fischl B, Andersson JL, Xu J, Jbabdi S, Webster M, Polimeni JR, Van Essen DC, Jenkinson M; WU-Minn HCP Consortium. The minimal preprocessing pipelines for the Human Connectome Project. Neuroimage. 2013;80:105–124. DOI: 10.1016/j.neuroimage.2013.04.127.
- Glasser MF, Coalson TS, Robinson EC, Hacker CD, Harwell J, Yacoub E, Ugurbil K, Andersson J, Beckmann CF, Jenkinson M, Smith SM, Van Essen DC. A multi-modal parcellation of human cerebral cortex. Nature. 2016;536(7615):171–178. DOI: 10.1038/nature18933.
- Platt JC. Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized Likelihood Methods. Advances in Large Margin Classifiers. 1999;10(3):61–74.
- Kipf TN, Welling M. Semi-supervised classification with graph convolutional networks. arXiv: 1609.02907. arXiv Preprint; 2016. DOI: 10.48550/arXiv.1609.02907.
- Fukushima K. Visual feature extraction by a multilayered network of analog threshold elements. IEEE Transactions on Systems Science and Cybernetics. 1969;5(4):322–333. DOI: 10.1109/ TSSC.1969.300225.
- Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv:1502.03167. arXiv Preprint; 2015. DOI: 10.48550/arXiv.1502.03167.
- Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research. 2014:15(56): 1929–1958.
- Xu K, Zhang M, Jegelka S, Kawaguchi K. Optimization of graph neural networks: Implicit acceleration by skip connections and more depth. arXiv:2105.04550. arXiv Preprint; 2021. DOI: 10.48550/arXiv.2105.04550.
- Grattarola D, Zambon D, Bianchi FM, Alippi C. Understanding pooling in graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 2024;35(2):2708–2718. DOI: 10.1109/TNNLS.2022. 3190922.
- 1132 reads