ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Kuptsov P. V. Computation of Lyapunov exponents for spatially extended systems: advantages and limitations of various numerical methods. Izvestiya VUZ. Applied Nonlinear Dynamics, 2010, vol. 18, iss. 5, pp. 91-110. DOI: 10.18500/0869-6632-2010-18-5-91-110

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 1204)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
517.9

Computation of Lyapunov exponents for spatially extended systems: advantages and limitations of various numerical methods

Autors: 
Kuptsov Pavel Vladimirovich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Abstract: 

Problems emerging in computations of Lyapunov exponents for spatially extended systems are considered. We concentrate on the incorrect orthogonalization of high sized ill conditioned matrices appearing in course of the computation, and on large errors emerging under certain conditions if the finite difference numerical method is applied to solve equations. The practical guidelines helping to avoid the mentioned problems are represented.

Reference: 
  1. Oseledets VI. A multiplicative ergodic theorem. Characteristic Ljapunov, exponents of dynamical systems. Trans. Moscow Math. Soc. 1968;19:197–231.
  2. Eckmann JP, Ruelle D. Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 1985;57(3):617–656. DOI: 10.1103/RevModPhys.57.617.
  3. Schaumloffel KU. Multiplicative ergodic theorems in infinite dimensions. In: Lyapunov Exponents. Lecture Notes in Mathematics. Springer, Berlin, Heidelberg. 1991;1486:187–195. DOI: 10.1007/BFb0086668.
  4. Robinson JC. Finite-dimensional behavior in dissipative partial differential equations. Chaos. 1995;5(1):330–345. DOI: 10.1063/1.166081.
  5. Yang HL, Takeuchi KA, Ginelli F, Chate H, Radons G. Hyperbolicity and the effective dimension of spatially-extended dissipative systems. Phys. Rev. Lett. 2009;102(7):074102. DOI: 10.1103/PhysRevLett.102.074102.
  6. Kuptsov PV, Parlitz U. Strict and fussy mode splitting in the tangent space of the Ginzburg–Landau equation. Phys. Rev. E. 2010;81:036214. DOI: 10.1103/PhysRevE.81.036214.
  7. Benettin G, Galgani L, Giorgilli A, Strelcyn JM. Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems: A method for computing all of them. Part I: Theory. Meccanica. 1980;15:9-20. Part II: Numerical application. Meccanica. 1980;15:21–30. DOI: 10.1007/BF02128237.
  8. Parker TS, Chua LO. Practical numerical algorithms for chaotic systems. Springer-Verlag; 1989. 348 p.
  9. Golub GH, van Loan CF. Matrix computations. Third Edition. The Johns Hopkins University Press, Baltimore, MD; 1996. 694 p.
  10. Geist K, Parlitz U, Lauterborn W. Comparison of different methods for computing Lyapunov exponents. Prog. Theor. Phys. 1990;83(5):875–893. DOI: 10.1143/PTP.83.875.
  11. Press WH, Teukolsky SA, Vetterling WT, Flannery BP. Numerical recipes in C. Cambridge University Press; 1992. 994 p.
  12. Aranson IS, Kramer L. The world of the complex Ginzburg–Landau equation. Rev. Mod. Phys. 2002;74(1):99–143. DOI: 10.1103/RevModPhys.74.99.
  13. Kalitkin NN. Numerical methods: Textbook. Moscow : Nauka, 1978. 512 p. (in Russian).
Received: 
26.02.2010
Accepted: 
14.05.2010
Published: 
31.12.2010
Short text (in English):
(downloads: 99)