ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Pavlov A. N., Anishchenko V. S. Computing largest Lyapunov exponent from a sequence of return times: possibilities and limitations. Izvestiya VUZ. Applied Nonlinear Dynamics, 1999, vol. 7, iss. 4, pp. 59-74. DOI: 10.18500/0869-6632-1999-7-4-59-74

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 0)
Language: 
Russian
Article type: 
Article
UDC: 
538.56:517.33:621.373

Computing largest Lyapunov exponent from a sequence of return times: possibilities and limitations

Autors: 
Pavlov Aleksej Nikolaevich, Saratov State University
Anishchenko Vadim Semenovich, Saratov State University
Abstract: 

We analyze whether it is possible to estimate dynamical characteristics of a chaotic attractor from а sequence of return times and study how the choice of a secant plane influences the result of reconstruction. Using Rossler model as ап example it is shown that the largest Lyapunov exponent can be determined from a series of return times even in that case, when not all the phase trajectories cross а secant plane.

Key words: 
Acknowledgments: 
The work was supported by the grant INTAS (№ 96-0305).
Reference: 
  1. Tuckwell HC. Introduction to theoretical neurobiology. Linear Cable Theory and Dendritic Structure. Cambridge: Cambridge University Press; 1988. 291 p. DOI: 10.1017/CBO9780511623271. Tuckwell HC. Introduction to theoretical neurobiology. Nonlinear and Stochastic Theories. Cambridge: Cambridge University Press; 1988. 265p. DOI: 10.1017/CBO9780511623202.
  2. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology Circulation. 1996;93(5):1043-1065.
  3. Sherman А. Anti-phase, asymmetric аnd aperiodic oscillations in excitable cells — I. Coupled bursters. Bulletin of Mathematical Biology. 1994;56(5):811-835. DOI: 10.1007/BF02458269.
  4. Longtin А, Bulsara А, Moss F. Time-interval sequences in the bistable sysiems and the noise-induced transmission of information by sensory neurons. Phys. Rev. Lett. 1991;67(5):656-659. DOI: 10.1103/PhysRevLett.67.656. Douglass JK, Wilkens L, Pantazelou E, Moss F. Noise enhancement оf the information in crayfish mechanoreceptors by stochastic resonance. Nature. 1993;365(6444):337-340. DOI: 10.1038/365337a0. Moss F, Pei Х. Neurons in parallel. Nature. 1995;376:211. Richardson КА, Imhoff TT, Grigg Р, Collins JJ. Encoding chaos in neural spike train. Phys. Rev. Lett. 1998;80(11):2485-2488. DOI: 10.1103/PhysRevLett.80.2485. Gluckman BJ, Netoff TI, Neel EJ, Ditto WL, Spano ML, Schiff SJ. Stochastic resonance in a neuronal network from mammalian brain source. Phys. Rev. Lett. 1996;77(19):4098-4101. DOI: 10.1103/PhysRevLett.77.4098.
  5. Sauer Т. Reconstruction оf dynamical system from interspike intervals. Phys. Rev. Lett. 1994;72(24):3811-3814.
  6. Castro R, Sauer T. System reconstruction and analysis using interspike intervals. Preprint. 1996.
  7. Sauer Т. Reconstruction оf integrate—and—fire dynamics. In: Cutler CD, Kaplan DT, editors. Nonlinear Dynamics and Time Series: Building a Bridge Between the Natural and Statistical Sciences. Vol. 11. Providence: American Mathematical Society; 1997. P. 63. DOI: 10.1090/fic/011/05.
  8. Bialek W, Rieke F, De Ruyter van Steveninck RR, Warland D. Reading a neural code. Science. 1991;252(5014):1854-1857. DOI: 10.1126/science.2063199. Gabbiani F, Koch C. Coding of time-varying signals in spike trains of integrate—and—fire neurons with random threshold. Neural Comput. 1996;8(1):44-66. DOI: 10.1162/neco.1996.8.1.44.
  9. Hegger R, Kantz H. Embedding of sequence оf time intervals. Europhys. Lett. 1997;38:267-272.
  10. Racicot DM, Longtin A. Interspike interval attractors from chaotically driven neuron models. Physica D. 1997;104(2):184-204. DOI: 10.1016/S0167-2789(97)00296-0.
  11. Castro R, Sauer Т. Chaotic stochastic resonance: Noise—enhanced reconstruction оf attractor. Phys. Rev. Lett. 1997;79(6):1030-1033. DOI: 10.1103/PhysRevLett.79.1030. Castro R, Sauer Т. Correlation dimension оf attractors through interspike intervals. Phys. Rev. E. 1997;55(1):287-290. DOI: 10.1103/PhysRevE.55.287. Castro R, Sauer Т. Reconstructing chaotic dynamics through spike filters. Phys. Rev. E. 1999;59(3):2911-2917. DOI: 10.1103/PhysRevE.59.2911.
  12. Takens F. Detecting strange attractors in turbulence. In: Rang D, Young LS, editors. Dynamical Systems and Turbulence, Warwick 1980. Lecture Notes in Mathematics. Vol. 898. Berlin: Springer; 1981. P. 366-381. DOI: 10.1007/BFb0091924. Packard NH, Cruichfield JP, Farmer JD, Shaw RS. Geometry from а time series. Phys. Rev. Lett. 1980;45(9):712-716. DOI: 10.1103/PhysRevLett.45.712. Sauer T, Yorke JA, Casdagli М. Embedology. J. Stat. Phys. 1991;65:579-616. DOI: 10.1007/BF01053745.
  13. Janson NB, Pavlov AN, Neiman AB, Anishchenko VS. Reconstruction of dynamical and geometrical properties of chaotic attractors from threshold—crossing interspike intervals. Phys. Rev. Е. 1998;58(1):4-7. DOI: 10.1103/PhysRevE.58.R4.
  14. Sauer T, Tempkin JA, Yorke JA. Spurious Lyapunov exponents in attractor reconstruction. Phys. Rev. Lett. 1998;81(20):4341-4344. DOI: 10.1103/PhysRevLett.81.4341.
  15. Dawson SP. Strange nonattracting chaotic sets, crises, and fluctuating Lyapunov exponents. Phys. Rev. Lett. 1996;76(23):4348-4351. DOI: 10.1103/PhysRevLett.76.4348.
  16. Froyland G, Judd K, Mees АI. Estimation of Lyapunov exponents оf dynamical systems using a spatial average. Phys. Rev. E. 1995;51(4):2844-2855. DOI: 10.1103/PhysRevE.51.2844.
  17. Anishchenko VS, Safonova MA. Noise-induced exponential spread of phase trajectories in the vicinity of regular attractors. Tech. Phys. Lett. 1986;12(12):740-744. (in Russian). Anishchenko VS, Herzel НР. Noise—induced chaos in а system with homoclinic points. Z. Angew. Math. Mech. 1988;68(7):317-318.
  18. Benettin G, Galgani L, Giorgilli A, Strelcyn JM. Lyapunov characteristic exponents for smooth dynamical systems and for hamiltonian systems; а method for computing аll of them. Part 1: Theory. Meccanica. 1980;15:9-20. DOI: 10.1007/BF02128236.
  19. Shimada I, Nagashima Т. A numerical approach to ergodic problem оf dissipative dynamical system. Progr. Theor. Phys. 1979;61(6):1605-1616. DOI: 10.1143/PTP.61.1605.
  20. Wiesel WE. Continuous time algorithm for Lyapunov exponents. I. Phys. Rev.E. 1993;47(5):3686-3691. DOI: 10.1103/PhysRevE.47.3686. Wiesel WE. Continuous time algorithm for Lyapunov exponents. II. Phys. Rev.E. 1993;47(5):3692-3697. DOI: 10.1103/PhysRevE.47.3692.
  21. Wiesel WE. Extended Lyapunov exponents. Phys. Rev. А. 1992;46(12):7480-7491. DOI: 10.1103/PhysRevA.46.7480. Theiler J, Smith LA. Anomalous convergence of Lyapunov exponent estimates. Phys. Rev. E. 1995;51(4):3738-3741. DOI: 10.1103/physreve.51.3738. Dawson S, Grebogi C, Sauer T, Yorke JA. Obstructions to shadowing when а Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 1994;73(14):1927-1930. DOI: 10.1103/PhysRevLett.73.1927. Rangarajan G, Habib S, Ryne RD. Lyapunov exponents without rescaling and reorthogonalization. Phys. Rev. Lett. 1998;80(17):3747-3750. DOI: 10.1103/PhysRevLett.80.3747. Ershov SV, Роtapov AB. On the concept оf stationary Lyapunov basis. Physica D. 1998;118(3-4):167-198. DOI: 10.1016/S0167-2789(98)00013-X. Potapov АB. Methods and Algorithms of Nonlinear Dynamics in the Tasks of Assessing the Parameters of Dynamic Models and Forecasting for Time Series. Doctoral Thesis. M.: Keldysh Institute of Applied Mathematics, Russian Academy of Sciences; 1999. 255 p.
  22. Wolf А, Swift JB, Swinney HL, Vastano JA. Determining Lyapunov exponents from a time series. Physica D. 1985;16(3):285-317. DOI: 10.1016/0167-2789(85)90011-9.
  23. Eckmann JP, Kamphorst SO, Ruelle D, Ciliberto S. Liapunov exponents from a time series. Phys. Rev. A. 1986;34(6):4971-4979. DOI: 10.1103/PhysRevA.34.4971. Sano M, Sawada Y. Measurement оf the Lyapunov spectrum from а chaotic time series. Phys. Rev. Lett. 1985;55(10):1082-1085. DOI: 10.1103/PhysRevLett.55.1082. Brown R. Calculating Lyapunov exponents for short and/or noisy data sets. Phys. Rev. E. 1993;47(6):3962-3969. DOI: 10.1103/PhysRevE.47.3962. Parlitz U. Identification of true аnd spurious Lyapunov exponents from time series. Int. J. Bifurc. Chaos. 1992;2(1):155-165. DOI: 10.1142/S0218127492000148.
  24. Kantz H. A robust method to estimate the maximal Lyapunov exponents of a time series. Phys. Lett. А. 1994;185(1):77-87. DOI: 10.1016/0375-9601(94)90991-1.
  25. Eckmann JP, Ruelle D. Fundamental limitations for estimating dimensions and Lyapunov exponents in dynamical systems. Physica D. 1992;56(2-3):185-187. DOI: 10.1016/0167-2789(92)90023-G. Brown R, Bryant Р, Abarbanel HDI. Computing the Lyapunov spectrum оf а dynamical system from аn observed time series. Phys. Rev. А. 1991;43(6):2787-2806. DOI: 10.1103/PhysRevA.43.2787. Karantonis A, Pagitsas M. Comparative study for the calculation of the Lyapunov spectrum from nonlinear experimental signals. Phys. Rev. Е. 1996;53(5):5428-5444. DOI: 10.1103/PhysRevE.53.5428. Zeng X, Eukholt R, Pielke RA. Estimating the Lyapunov-exponent spectrum from short time series of low precision. Phys. Rev. Lett. 1991;66(25):3229-3232. DOI: 10.1103/PhysRevLett.66.3229. Bryant Р, Brown R, Abarbanel HDl. Lyapunov exponents from observed time series. Phys. Rev. Lett. 1990;65(13):1523-1526. DOI: 10.1103/PhysRevLett.65.1523.
  26. Potapov AB. Quality of reconstructions of chaotic attractors and choice of reconstruction parameters. Preprint of the Institute of Applied Mathematics of the Russian Academy of Sciences. 1995. No 13. 28 p. Роtароv А. Distortions оf reconstruction for chaotic attractors. Physica D. 1997;101(3-4):207-226. DOI: 10.1016/S0167-2789(96)00234-5.
  27. Paladin G, Serva M, Vulpiani A. Complexity in dynamical systems with noise. Phys. Rev. Lett. 1995;74(1):66-69. DOI: 10.1103/PhysRevLett.74.66. Loreto V, Paladin G, Vulpiani A. Concept of complexity in random dynamical systems. Phys. Rev. E. 1996;53(3):2087-2098. DOI: 10.1103/PhysRevE.53.2087.
  28. Faure Р, Korn H. A new mecthod to estimate the Kolmogorov entropy from recurrence plots: its application to neuronal signals. Physica D. 1998;122(1-4):265-279. DOI: 10.1016/S0167-2789(98)00177-8.
  29. Farmer JD, Sidorowich JJ. Predicting chaotic time series. Phys. Rev. Lett. 1987;59(8):845-848. DOI: 10.1103/PhysRevLett.59.845.
Received: 
26.04.1999
Accepted: 
09.06.1999
Published: 
01.10.1999