ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Sominski G. G., Tumareva T. A. Development and improvement of field emitters containing carbon materials. Izvestiya VUZ. Applied Nonlinear Dynamics, 2009, vol. 17, iss. 3, pp. 17-54. DOI: 10.18500/0869-6632-2009-17-3-17-54

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 239)
Language: 
Russian
Article type: 
Review
UDC: 
537.5

Development and improvement of field emitters containing carbon materials

Autors: 
Sominski G. G., Peter the Great St. Petersburg Polytechnic University
Tumareva Tatjana Alekseevna, Peter the Great St. Petersburg Polytechnic University
Abstract: 

Achievements and problems in creation of field emitters for vacuum microwave devices are described. The main attention is devoted to the emitters made of containing carbon materials for high-voltage devices operating at technical vacuum conditions 10−6 – 10−8 Torr. The brief review of existing works is presented. Results of investigations performed in SPbSPU are described.

Reference: 
  1. Bondarenko BV, Seliverstov VA, Shakhovskaya AG, Sheshin EP. Dynamics of the emitting surface of carbon-fibre autocathodes during long-term operation. Journal Of Communications Technology And Electronics. 1987;32(1):199–201.
  2. Gulyaev YuV, Grigoryev YuA, Sinitsyn NI. et al . Materials of the All-Russian inter-university conference "Modern problems of microwave electronics and radiophysics." Saratov: Kollege; 1997. 90–93 p. (In Russian).
  3. Sheshin EP. Surface structure and autoemission properties of carbon materials. Moscow: MIPT; 2001. 288 p. (In Russian).
  4. Fowler RH, Nordheim L. Electron emission in intence electric fields. Proc. R. Soc. 1928;119:173–181. DOI: 10.1098/RSPA.1928.0091.
  5. Good RH, Mueller EW. Field Emission. Handbuch der Physik. Ed. S. Fluegge. Berlin: Springer. 1956. Vol. 21 p. 176.
  6. Hawkes PW, Kasper E. Applied geometrical optics. Principles of Electron Optics. Vol. 2. New York: Academic; 1996. 575 p.
  7. Shakir MI, Nadeem M, Shahid SA, Mohamed NM. Carbon nanotube electric field emitters and applications. Nanotechnology. 2006;17(6):41–56.
  8. Nilsson L, Groening O, Emmenegger C. et al. Scanning field emission from patterned carbon nanotube films. Appl. Phys. Lett. 2000;76(15):2071–2073. DOI: 10.1063/1.126258.
  9. Bocharov GS, Eletskii AV. Effect of screening on the emissivity of field electron emitters based on carbon nanotubes. Technical Physics. 2005;50(7):944–947. DOI: 10.1134/1.1994978.
  10. Martin EE, Trolan JK, Dyke WP. Stable, high density field emission cold cathode. J. Appl. Phys. 1960;31(5):782–789. DOI: 10.1063/1.1735699.
  11. Tamm IE. Fundamentals of the theory of electricity. Moscow: Nauka; 1989. 504 p. (In Russian).
  12. Charbonnier FM, Barbour JR, Garrett LF, Dyke VP. Study of the nature and applied properties of cold emission on microwave. TIIER. 1963;51(7):989–1004.
  13. Afanasov SG, Ashbel' IY, Zhulkovskii BM. et al. Certain results of an experimental investigation of low-voltage microwave vacum electron devices. Radiophys Quantum Electron. 1973;16(11):1374–1376. DOI: 10.1007/BF01080925.
  14. Trubetskov DI, Rozhnev AG, Sokolov DV. Lectures on ultrahigh-frequency vacuum microelectronics. Saratov: Kollege; 1996. 238 p. (In Russian).
  15. Spindt CA, Brodie I, Humphrey L, Westerberg ER. Physical properties of thin-film field emission cathodes with molybdenum cones. J. of Appl. Phys. 1976;47(12):5248–5263. DOI: 10.1063/1.322600.
  16. Brodie I, Spindt CA. Microelectronics. Advances in Electronics and Electron Physics. New York: Academic. 1992;83:1–106.
  17. Spindt CA, Holland CE, Rosengreen A, Brodee I. Field-emitter arrays for vacuum microelectronics. IEEE Trans. on ED. 1991;38(10):2355–2363. DOI: 10.1109/16.88525.
  18. Garven M, Spark SN, Cross AW, Cooke SJ, Phelps ADR. Gyrotron experiments employing a field emission array cathode. Phys. Rev. Lett. 1996;77(11):2320–2323. DOI: 10.1109/PLASMA.1995.531563.
  19. Spindt CA, Holland CE, Schwoebel PR, Brodie I. Field emitter array development for microwave applications. J. Vac. Sci. Technol. B. 1996;14:1986–1989. DOI: 10.1116/1.588970.
  20. Spindt CA, Holland CE, Schwoebel PR, Brodie I. Field emitter array development for microwave applications. J. Vac. Sci. Technol. B. 1998;16(2):758–761. DOI: 10.1109/IVMC.1996.601904.
  21. Makishimia H, Imura H, Takahashi M. et al. Remarkable improvements of micro-wave electron tubes through the development of cathode materials. In Tech. Dig. Of the 10th Int. Vacuum Microelectronics Conf. (Aug. 17-21 1997, Kyonggiu, Korea), EDIRAK, Seoul. 1997. 194–199 p.
  22. Whaley DR, Armstrong CM, Gannon B. et al. PPM focused TWT using a field emitter array cold cathode. In Proc. IEEE Int. Conf. Plasma Sci; 1998. 125–126 p.
  23. Whaley DR, Gannon BM, Smith CR. et al. Application of field emitter arrays to microwave power amplifiers. IEEE Trans. on Plasma Sci. 2000;28(3):727–747. DOI: 10.1109/27.887712.
  24. Whaley DR. et al. Experimental demonstration of an emission-gated travelling wave tube amplifier. IEEE Trans. on Plasma Sci. 2002;30(3):998–1008. DOI: 10.1109/TPS.2002.801527.
  25. Whaley DR, Duggal R, Armstrong CM. et al. Operation of a low-voltage high transconductance field emitter array TWT. Conference Absracts of The 35th IEEE International Conference on Plasma Science (June 15-19, 2008, Karlsruhe, Germany). 2008. 310–310.
  26. Baker FS, Osborn AR, Williams J. The carbon fibre field emitter. J. Phys. D: Appl. Phys. 1974;7(15):2105–2115. DOI: 10.1088/0022-3727/7/15/315.
  27. Braun E, Smith JE, Sykest DE. Carbon fibers as field emitter. Vacuum. 1975;25(9/10):425–426.
  28. Bondarenko BV, Cherepanov AYu, Shakhbazov SYu. et al. High-current carbon fiber-based autocode. Elektronnaya Tekhnika, Series 1 SVCH – Tekhnika. 1987;10:45.
  29. Bondarenko BV, Gabdullin PG, Gnuchev NM. et al. Emissivity of powders prepared from nanoporous carbon. Technical Physics. 2004;49(10):1360–1363. DOI: 10.1134/1.1809711.
  30. Bondarenko VB, Gabdullin PG, Gnuchev NM, Davydov SN. Emission capacity of carbon nanostructures obtained from carbides St. Petersburg Polytechnical University Journal: Physics and Mathematics. 2008;3(59):164–169.
  31. Bondarenko BV, Ilyin VN, Sheshin EP. et al. Emission characteristics of autocathodes from pyrographite plates Elektronnaya Tekhnika, Series 1 SVCH – Tekhnika. 1988;1:34–38.
  32. Suvorov AL, Sheshin EP, Protasenko VV. et al. Plane microrough graphite field-emission cathodes produced by ion bombardment. Technical Physics. 1996;41(7):719–721.
  33. Grigoriev YA, Petrosyan AJ, Penzyakov VV. et al. Experimental study of matrix carbon field-emission cathodes and computer aided design of electron guns for microwave power devices, exploring these cathodes. J. Vac. Sci. Technol. В. 1997;15(2):503–506. DOI: 10.1116/1.589609.
  34. Andreev KV, Grigoriev YuA, Milyutin DD. et al. Pulsed autoemission electron sources based on carbon micro and nanostructures for microwave radiation devices: numerical and experimental research. Materials of the 13 winter school-seminar on microwave electronics and radiophysics (Saratov, January 31 - February 5, 2006). Saratov: Kollege; 2006. p. 64.(In Russian).
  35. Savelyev SG, Sinitsyn NI, Torgashov GV, Grigoryev YuA. Study of film carbon cathodes obtained by pyrolysis of heptane. Materials of the international inter-university conference "Modern problems of electronics and microwave radiophysics" (March 20-24, 2001, Saratov). 2001 p. 138. (In Russian).
  36. Dzbanovsky NN, Pilevsky AA, Suetin NV, Rakhimov AT, Timofeev MA. Cold cathode and methods for producing the same. United States Patent No 6,593,681 B1. Date of Patent: Jul. 15, 2003.
  37. Dzbanovskii NN, Minakov PV, Pilevskii AA. et al. High-current electron gun with a field-emission cathode and diamond grid. Technical Physics. 2005;50(10):1360–1362. DOI: 10.1134/1.2103286.
  38. Bonard JM, Maier F, Stokli T. et al. Field emission properties of multiwalled carbon nanotubes. Ultramicroscopy. 1998;73(7):7–15. DOI: 10.1016/S0304-3991(97)00129-0.
  39. Teo KB. et al. Plasma enhanced chemical vapour deposition carbon nanotubes/nano fibers: how uniform do they grow? Nanotechnology. 2003;14(2):204–211. DOI: 10.1088/0957-4484/14/2/321
  40. Milne WI, Teo KBK, Amaratunga GAJ. et al. Carbon nanotubes as field emission sources. J. Mater. Chem. 2004;14(6):933–943. DOI: 10.1039/b314155c.
  41. Purcell ST, Vincent P, Journet C, Binh VT. Hot nanotubes: stable heating of individual multiwall carbon nanotubes to 2000 K induced by the field emission current. Phys. Rev. Lett. 2002;88(10):105502. DOI: 10.1103/PhysRevLett.88.105502.
  42. Vincent P, Purcell ST, Journet C, Binh VT. Modelization of resistive heating of carbon nanotubes during field emission. Phys. Rev. 2002;66(7):075406. DOI: 10.1103/PhysRevB.66.075406.
  43. Bocharov GS, Eletskii AV. Thermal instability of field emission from carbon nanotubes. Technical Physics. 2007;52(4):498–503. DOI: 10.1134/S1063784207040160.
  44. Yue GZ, Qiu Q, Gao Bo et al. Generation of continuous and pulsed diagnostic imagine X-ray radiation using a carbon-nanotube-based field-emission cathode. Appl. Phys. Lett. 2002;81(2):355–357. DOI: 10.1063/1.1492305.
  45. Ding Ming Q, Li Xinghui, Bai Guodong et al. Fabrication of Spindt-type cathodes with aligned carbon nanotube emitters. Appl. Surf. Sci. 2005;251(1-4):201–202. DOI: 10.1109/IVNC.2004.1354979.
  46. Fujii Shunjiro, Honda Shin-ichi, Machida Hironobu et al. Efficient field emission from an individual aligned carbon nanotube bundle enhanced by edge effect. Appl. Phys. Lett. 2007;90(15):153108(1–3). DOI: 10.1063/1.2721876.
  47. Krauss AR, Auciello O, Ding MQ. et al. Electron field emission for ultranano-crystalline diamond films. J. of Appl. Phys. 2001;89(5):2958–2967. DOI: 10.1063/1.1320009.
  48. Rakhimov AT, Samorodov VA, Soldatov ES. et al. Investigation of field emission of nanocrystalline diamond films by scanning tuna-non microscopy. J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 1999;7:43–46.
  49. Rakhimov AT, Samorodov VA, Soldatov ES. et al. Correlation of emission and structural characteristics of diamond films by scanning tunnel microscopy. J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 1999;7:47–51.
  50. Rakhimov AT, Suetin NV, Soldatov ES. Scanning tunneling microscope study of diamond films for electron field emission. Vacuum Science Technology. 2000;18(1):76–81. DOI: 10.1116/1.591154.
  51. Uppireddi Kishore, Weiner Brad R., Moreli Gerardo. Studi of the temporal current stability of field-emitted electrons from ultrananocrystalline films. J. of Appl. Phys. 2008;103(10):104315(1-5). DOI: 10.1063/1.2927398.
  52. Sinitsyn NI, Gulyaev YV, Torgashov GV. et al. Thing films consisting of carbon nanotubes as a new material for emission electronics. Appl, Surf. Sci. 1997;111(3):145–150.
  53. Fursey GN, Novikov DV, Dyuzhev GA. et al. The field emission from carbon nanotubes. Appl. Surf. Sci. 2003;215(1):135–140. DOI: 10.1016/S0169-4332(03)00316-7.
  54. Fursei GN, Baskin LM. Field emission from semiconductors. Russian Microelectronics. 1997;26(2):96–101.
  55. Baskin LM, Fursey GN. Deсisive role of dip trap states in initiating of vacuum breakdone in presence of dielectric insertions. Proc. of the 13th ISDEIV. Part 1. Paris. 1988. p. 31.
  56. Sinitsyn NI, Gulyaev YuV, Devyatkov ND. et al. Carbon nanocluster structures - one of the materials of emission electronics of the future Radioengineering. 2000;2:9–18.
  57. Troillas P, Moliton A, Ratier B. Doping effects induced by potassium ion implantation in solid C60. Synthetic Metals? 1995;73:145–149. DOI: 10.1016/0379-6779(95)03317-3.
  58. Troillas P, Ratier B, Moliton A. at all. Field-effect studies of C60 thin films before and after implantation with potassium. Synthetic Metals? 1996;81:259–263. DOI: 10.1016/S0379-6779(96)03749-6.
  59. Suzuki Satoru, Bower Chris, Zhou Otto. Work functions and valence band states of pristine and Cs-intercalated single-walled carbon nanotube bundles. Appl. Phys. Lett. 2000;76(26):4007–4009. DOI: 10.1063/1.126849.
  60. Bobkov AF, Davydov EV, Zaǐtsev SV. et al. The use of carbonaceous materials as field-emission cathodes. Technical Physics. 2001;46(6):736–742. DOI: 10.1134/1.1379644.
  61. Suzuki Satoru, Maeda Fumihiko, Watanabe Yoshio, Ogino Toshio. Electronic structure of single-walled carbon nanotubes encapsulating potassium. Phys. Rev. 2003;67(11):115418(1-6). DOI: 10.1103/PhysRevB.67.115418.
  62. Campbell EEB, Tellgmann R, Krawez N, Hertel IV. Production LDMS characterization of endohedral alkali-fullerene films. J. Phys. Chem. Solids. 1997;58(11):1763–1769.
  63. Bagge-Hansen M, Outlaw RA, Miraldo P. et al. Field emission from Mo2C coated carbon nanosheets. J. of Appl. Phys. 2008;103(1):014311(1-9). DOI: 10.1063/1.2829810.
  64. Vlahos V, Morgan D, Booske JH. Material analysis and characterization of cesium iodide (CsI) coated C fibers for field emission applications. Conference Abstracts of The 35th IEEE International Conference on Plasma Science. Germany: Karlsruhe(June 15–19). 2008. p. 126. DOI: 10.1109/PLASMA.2008.4590624.
  65. Sominski GG, Tumareva TA, Polyakov AS, Zabello KK. Field Emitters with Carbon Containing Coverages and Based on Carbon Fibers: Possibilities of Creation and Use in Microwave Electronics. Proc. of Int Univ. Conf. «Electronics and Radiophysics of Ultra-High Frequences». St.Petersburg: St.Petersburg State Technical University. 1999. p. 327.
  66. Tumareva TA, Sominski GG, Polyakov AS. Fullerene Coverages Formation on Tungsten Tip Surface at High Electric Fields. ITG-Fachbericht Proceedings «Displays and Vacuum Electronics» (May 2-3, 2001, Garmisch-Partenkirchen, Germany). 2001, VDE Verlag GMBH, Berlin, Offenbach, N165, p. 269.
  67. Tumareva TA, Sominskii GG, Efremov AA, Polyakov AS. Tip field emitters coated with fullerenes. Technical Physics. 2002.;47(2):244–249. DOI: 10.1134/1.1451975.
  68. Tumareva TA, Sominskii GG, Polyakov AS. Formation on field emitters coated with fullerenes of microformations producing ordered emission images. Technical Physics. 2002;47(2):250–254. DOI: 10.1134/1.1451976.
  69. Tumareva TA, Sominskii GG, Veselov AA. Potassium-induced activation of field emitters with fullerene coating. Technical Physics. 2004;49(7):916–919. DOI: 10.1134/1.1778868.
  70. Tumareva TA, Sominskii GG, Bondarenko AK, Veselov AA, Svetlov IA. Activation of fullerene coatings on field emitters by potassium atom and ion fluxes. Technical Physics. 2006;51(7):898–901. DOI: 10.1134/S1063784206070140.
  71. Tumareva TA, Sominskii GG, Bondarenko AK, Morozov AN, Svetlov IA. Field emitters with fullerene coatings and their activation. Izvestiya VUZ. Applied Nonlinear Dynamics. 2006;14(3):51–69. DOI: 10.18500/0869-6632-2006-14-3-51-69.
  72. Tumareva TA, Sominskii GG, Svetlov IA, Morozov AN. Fullerene-coated field emitters activated by a potassium ion flux in high electric fields. Technical Physics. 2008;53(11):1504–1507. DOI: 10.1134/S1063784208110169.
  73. Sokolov VI, Stankevich IV. The fullerenes – new allotropic forms of carbon: molecular and electronic structure, and chemical properties. Russian Chem. Reviews. 1993;62(5):419–435.
  74. Khodorkovsky MA, Murashov SV, Artamonova TO. et al. The Binding Energy of Molecules in Thin Fullerene Films. Technical Physics Letters. 2004;30(2):129–130. DOI: 10.1134/1.1666961.
Received: 
26.02.2009
Accepted: 
26.02.2009
Published: 
31.07.2009
Short text (in English):
(downloads: 106)