ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Vorobjeva T. N. Dynamic homoeostasis: equilibrium, steady state, chaos?. Izvestiya VUZ. Applied Nonlinear Dynamics, 1996, vol. 4, iss. 1, pp. 102-108.

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 0)
Language: 
Russian
Article type: 
Article
UDC: 
612.822/577

Dynamic homoeostasis: equilibrium, steady state, chaos?

Autors: 
Vorobjeva Tatiana Nikolaevna, Lomonosov Moscow State University
Abstract: 

The steady state (s.s.) is а very important notion for understanding of nature and functional mechanisms оп various biclogical systems. Physiological homoeostasis is one of the notions connected with mathematic notion of the s.s. The character of organisms functional changes under variation of environmental conditions depends on the number оf s.s. and types of stability, which are programmed by the system’s structure. At complex nonlinear dynamic system as а result of the system’s nonstability the regimes known as «trigger», «oscillator» and «chaos» may arise. A set of mathematical models is analysed, which demonstrate different regimes: the biological electron and membrane transport systems, the heart rate dynamics.

Key words: 
Reference: 
  1. Goldberger AL. Iz the normal heartbeat chaotic or homeostatic? News Physiol. Sci. 1991;6:87-91. DOI: 10.1152/physiologyonline.1991.6.2.87.
  2. Anishchenko VS, Saparin PI. Normalized entropy as a diagnostic sign of the reaction of the human cardiovascular system to external influences. Izvestiya VUZ. Applied Nonlinear Dynamics. 1993;1(3-4):54-64.
  3. Rashevsky N. Some Medical Aspects of Mathematical Biology. N.Y.: Thomas; 1964. 314 p.
  4. Romanovskii YuM, Stepanova NV, Chernavskii DS. Mathematical Modeling in Biophysics. Physics of Life Processes. M.: Nauka; 1975. 343 p.
  5. Rubin AV, Pytyeva NF, Riznichenko GYu. Kinetics of Biological Processes. М.: Moscow University Press; 1987. 299 p.
  6. Shnol SE, editor. Biological Clock. M.: Mir; 1964. 695 p.
  7. Ashoff Yu, editor. Biological Rhythms. М.: Mir; 1984. 412 p.
  8. Glass L, Mackey MC. From Clocks to Chaos: The Rhythms of Life. Princeton: Princeton University Press; 1988. 248 p.
  9. Gloy К. The problem of the last justification of dynamic systems. Questions of Philosophy. 1994;3:94.
  10. Selye H. Stress and the General Adaptation Syndrome. British Medical Journal. 1950;1:1383-1392. DOI: 10.1136/bmj.1.4667.1383.
  11. Hardy RN. Homeostasis. London: Edward Arnold; 1976. 55 p.
  12. Prokhorov AM, editor. Physical Encyclopedic Dictionary. М.: Sovetskaya entsiklopediya; 1983. 928 p.
  13. Bauer ES. Theoretical Biology. Moscow: VIEM; 1935. 206 p.
  14. Vorobyeva TN, Zotin АI. Theoretical views of E.S. Bauer and modern biology. J. Gen. Biol. 1973;34(1):90-96.
  15. Nicolis G, Prigogine I. Self-Organization in Nonequilibrium Systems: From Dissipative Structures to Order Through Fluctuations. N.Y.: Wiley; 1977. 491 p.
  16. Vorobyeva ТN, Krendeleva TE, Riznichenko GYu, Rubin АB. Endogenous electronic transport in subchloroplast particles enriched with photosystem 1. Mathematical model. Studia Biophysica. 1981;86(3):14-26.
  17. Vorobyeva TN, Lukashev EP, Riznichenko GYu. Exploration of the functional organization of the acceptor section of the electron transport chain in the reaction centers of photosynthetic bacteria Rh.sphaeroides. Biological Sciences. 1981;7:44-51.
  18. Vorobyeva TN, Krendeleva TE, Shaitan KV, Rubin АB. Functional role of plastocyanin in electron transport fragments of photosystem 1 in higher plants. Mathematical model and physical representations. Mol. Biol. 1983;17(1):82-92.
  19. Vorobyeva TN, Riznichenko GYu, Shaitan KV, Rubin АB. Features of the functional organization of the acceptor section of the electron-transport chain of the photosystem 1 of higher plants. Studia Biophysica. 1984;100(1):66-75.
  20. Vorobyeva TN, Riznichenko GYu, Rubin АB, Shaitan KV. On the physical mechanisms of regulation of electron transfer between primary quinone and pigment in the reaction centers of photosynthetic bacteria Rh. sphaeroides during the transition from lighting to dark conditions. Mol. Biol. 1986;20(5):1203-1213.
  21. Khrabrova EN, Vorobyeva TN, Riznichenko GYu, Rubin АB. Identification of the parameters of electrostatic interactions of platocyanin with pigment-protein complexes of photosystem 1 of higher plants. Biophysics. 1989;34(3):429-433.
  22. Riznitchenko GYu, Vorobjeva TN, Khrabrova EN. ldentification of kinetic parameters of plastocianin and P700 interactions in chloroplasts and pigment-protein complexes of photosystem Photosynthetica. 1990;24(3):37-51.
  23. Riznitchenko GYu, Vorobjeva TN, Khrabrova EN, Rubin АB. Comparative analysis of kinetic and conformational characteristics of solubilized and embedded in liposomes pigment-protein complexes of photosystem 1 of higher plants. Biophysics. 1986;31(1):793-799.
  24. Riznichenko GYu, Plyusnina ТYu, Vorobjeva TN, Aksenov SI, Cgernyakov GМ. Model of response of the membrane transport system to an alternating electric field. Biophysics. 1993;38(4):667.
  25. Agadzhanyan NA, editor. Adaptation and Biorhythms. Adaptation of Animals and Humans to Extreme Environmental Conditions. M.: Peoples’ Friendship University Publishing; 1985. 184 p.
  26. Viru АА. Mechanism of general adaptation. Usp. Phiziol. Nauk. 1980;11(4):27-46.
  27. Slonim АD. Physiological adaptations and maintenance of vegetative homeostasis. Hum. Physiol. 1982;8(3):151-156.
  28. Vorobjeva TN. Hierarchy of biological systems and adequacy of their models. In: Proceedings of the International Congress of the Association “Women-Mathematicians”. Volgograd: Peremena; 1994. P. 133.
Received: 
01.12.1994
Accepted: 
22.11.1995
Published: 
05.06.1996