ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Feoktistov A. V., Anishchenko V. S. Dynamics of the FitzHugh–Nagumo system under external periodic force. Izvestiya VUZ. Applied Nonlinear Dynamics, 2011, vol. 19, iss. 5, pp. 35-44. DOI: 10.18500/0869-6632-2011-19-5-35-44

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 403)
Language: 
Russian
Article type: 
Article
UDC: 
537.86/87:530.182

Dynamics of the FitzHugh–Nagumo system under external periodic force

Autors: 
Feoktistov Aleksej Vladimirovich, Saratov State University
Anishchenko Vadim Semenovich, Saratov State University
Abstract: 

In paper on basis of radiophysical experiment analysis of dynamics of the FitzHugh– Nagumo system have been carried out. The dependence of oscillation’s regime in the system from force parameter has been found out. Influence of the form of the external force signal on the system response has been studied.

Reference: 
  1. Yanagita T, Nishiura Y, Kobayashi R. Signal propagation and failure in one-dimensional FitzHugh–Nagumo equations with periodic stimuli. Phys. Rev. E. 2005;719(3):036226. DOI: 10.1103/PhysRevE.71.036226.
  2. Gong PL, Xu JX. Global dynamics and stochastic resonance of the forced Fitz-Hugh–Nagumo neuron model. Phys. Rev. E. 2001;63(3):031906. DOI: 10.1103/PhysRevE.63.031906.
  3. Coombes S, Osbaldestin AH. Period-adding bifurcation and chaos in periodically stimulated excitable neural relaxation oscillator. Phys. Rev. E. 2000;62(3):4057–4066. DOI: 10.1103/physreve.62.4057.
  4. Othmer HG, Xie M. Subharmonic resonance and chaos in forced excitable systems. J. Math. Biol. 2006;39(2):139–171. DOI: 10.1007/s002850050166.
  5. Lee SG, Seunghwan K. Bifurcation analysis of mode-locking structure in a Hodgkin–Huxley neuron under sinusoidal current. Phys. Rev. E. 2006;73(4):041924. DOI: 10.1103/PhysRevE.73.041924.
  6. Alexander JC, Doedel EJ, Othmer HG. On the resonance structure in a forced excitable system. SIAM J. Appl. Math. 1990;50(5):1373–1418. DOI: 10.1137/0150082.
  7. Pikovsky AS, Kurths J. Coherence resonance in a noise-driven excitable system. Phys. Rev. Lett. 1997;78(5):775–778. DOI: 10.1103/PhysRevLett.78.775.
  8. Linder B, Schimansky-Geier L. Analytical approach to the stochastic FitzHugh–Nagumo system and coherence resonance. Phys. Rev. E. 1999;60(6):7270–7276. DOI: 10.1103/physreve.60.7270.
  9. Feoktistov AV, Astahov SV, Anishchenko VS. Coherence resonance and synchronization of stochastic self-sustained oscillations in the FitzHugh–Nagumo system. Izvestiya VUZ. Applied Nonlinear Dynamics. 2010;18(5):33–43 (in Russian). DOI: 10.18500/0869-6632-2010-18-5-33-43.
  10. Croisier H. Continuation and Bifurcation Analyses of a Periodically Forced Slow–Fast System. Liege, Mars; 2009. 126 p.
  11. FitzHugh R. Impulses and physiological states in theoretical models of nerve membrane. Bull. Math. Biophysics. 1955;17:257.
  12. Andronov AA, Vitt AA, Khaikin SE. Theory of Oscillators. Pergamon; 1966. 848 p.
  13. Arrowsmith D, Place K. Ordinary Differential Equations: A Qualitative Approach with Applications. Chapman & Hall; 1982. 250 p.
  14. Izhikevich EM. Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting. The MIT Press, Cambridge; MA, 2007. 409 p.
Received: 
24.10.2011
Accepted: 
24.10.2011
Published: 
30.12.2011
Short text (in English):
(downloads: 79)