ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Kozhevnikov A. V., Dudko G. M., Khivintsev Y. V., Sakharov V. K., Vysotskii S. L., Nikulin Y. V., Seleznev M. E., Khitun A. G., Filimonov Y. A. Effect of probing signal on the output signals spectrum of nonlinear spin waves in a cross based on waveguides of iron-yttrium garnet film. Izvestiya VUZ. Applied Nonlinear Dynamics, 2021, vol. 29, iss. 5, pp. 812-828. DOI: 10.18500/0869-6632-2021-29-5-812-828

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
Language: 
Russian
Article type: 
Article
UDC: 
537.622.2; 537.862

Effect of probing signal on the output signals spectrum of nonlinear spin waves in a cross based on waveguides of iron-yttrium garnet film

Autors: 
Kozhevnikov Aleksandr Vladimirovich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Dudko Galina Mihajlovna, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Khivintsev Y. V., Saratov State University
Sakharov Valentin Konstantinovich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Vysotskii S. L., Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Nikulin Y. V., Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Seleznev M. E., Saratov State University
Khitun Aleksander Georgievich, University of California-Riverside
Filimonov Y. A., Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Abstract: 

Subject. A change in the spectrum of spin waves (SW) in a magnetic cross is investigated when two signals pass through it: a pump signal and a probe signal. Objective. Detection of specific features in formation of the spectra of the output signals of SW in the multiport structure based on a yttrium iron garnet (YIG) film in the case of excitation of two magnetostatic surface waves (MSSW) simultaneously by the input antenna, where the first, with power higher than the first-order parametric instability threshold is the pump, and the second one is a probe. Methods. The experiments were performed for a cross structure from YIG film in the form of two orthogonal waveguides with the SW wire antennas placed at the ends of the waveguides, where one of the antennas on the transversely magnetized waveguide was considered as the input. Result. It was found that by choosing the probing signal frequency, one can significantly (by 10 dB) change the relative signal levels for the satellite waves at the output antennas, which are secondary MSSWs with some new frequencies and appear in the output signals spectrum as a result of the thresholdless processes of merging of parametric spin waves generated by MSSW pumping. In this case the secondary MSSWs frequencies can differ at the output antennas located on orthogonal waveguides. Discussion. The discovered effect is associated with the nonreciprocal nature of propagation of both the pumping wave and the waves generated at parametric instability condition in the structure.

Acknowledgments: 
The study was carried out with the financial support of the Russian Science Foundation (project no. 17-19-01673). The work of A. Khitun was supported in part by the INTEL CORPORATION (Award #008635, Spin Wave Computing) (Project director is Dr. D. E. Nikonov). The authors express their gratitude to A. G. Rozhnev for a useful discussion of the results of the work
Reference: 
  1. Mahmoud A, Ciubotaru F, Vanderveken F, Chumak AV, Hamdioui S, Adelmann C, Cotofana S. Introduction to spin wave computing. J. Appl. Phys. 2020;128(16):161101. DOI: 10.1063/5.0019328.
  2. Bernstein K, Cavin RK, Porod W, Seabaugh A, Welser J. Device and architecture outlook for beyond CMOS switches. Proc. IEEE. 2010;98(12):2169–2184. DOI: 10.1109/JPROC.2010.2066530.
  3. Nikonov DE, Young IA. Overview of beyond-CMOS devices and a uniform methodology for their benchmarking. Proc. IEEE. 2013;101(12):2498–2533. DOI: 10.1109/JPROC.2013.2252317.
  4. Roy K, Bandyopadhyay S, Atulasimha J. Hybrid spintronics and straintronics: A magnetic technology for ultra low energy computing and signal processing. Appl. Phys. Lett. 2011;99(6): 063108. DOI: 10.1063/1.3624900.
  5. Chumak AV, Vasyuchka VK, Serga AA, Hillebrands B. Magnon spintronics. Nature Physics. 2015;11(6):453–461. DOI: 10.138.NPHYS3347.
  6. Nikitov SA, Kalyabin DV, Lisenkov IV, Slavin AN, Barabanenkov YN, Osokin SA, Sadovvnikov AV, Baginin EN, Morozova MA, Sharaevskii YP, Filimonov YA, Khivintsev YV, Vysotsky SL, Sakharov VK, Pavlov ES. Magnonics: A new research area in spintronics and spin wave electronics. Phys. Usp. 2015;58(10):1002–1028. DOI: 10.3367/ UFNr.0185.201510m.1099.
  7. Khitun A, Wang KL. Non-volatile magnonic logic circuits engineering. J. Appl. Phys. 2011; 110(3):0343061. DOI: 10.1063/1.3609062.
  8. Khitun A. Magnonic holographic devices for special type data processing. J. Appl. Phys. 2013; 113(16):164503. DOI: 10.1063/1.4802656.
  9. Khitun AG, Kozhanov AE. Magnonic logic devices. Izvestiya of Saratov University. Physics. 2017;17(4):216–241 (in Russian). DOI: 10.18500/1817-3020-2017-17-4-216-241.
  10. Nanayakkara K, Anferov A, Jacob AP, Allen SJ, Kozhanov A. Cross junction spin wave logic architecture. IEEE Trans. Magn. 2014;50(11):3402204. DOI: 10.1109/TMAG.2014.2320632.
  11. Kozhevnikov A, Gertz F, Dudko G, Filimonov Y, Khitun A. Pattern recognition with magnonic holographic memory device. Appl. Phys. Lett. 2015;106(14):142409. DOI: 10.1063/1.4917507.
  12. Balynsky M, Gutierrez D, Chiang H, Kozhevnikov A, Dudko G, Filimonov Y, Balandin AA, Khitun A. A magnetometer based on a spin wave interferometer. Sci. Rep. 2017;7(1):11539. DOI: 10.1038/s41598-017-11881-y.
  13. Au Y, Davison T, Ahmad E, Keatley PS, Hicken RJ, Kruglyak VV. Excitation of propagating spin waves with global uniform microwave fields. Appl. Phys. Lett. 2011;98(12):122506. DOI: 10.1063/1.3571444.
  14. Bracher T, Pirro P, Westermann J, Sebastian T, Lagel B, Van de Wiele B, Vansteenkiste A, Hillebrands B. Generation of propagating backward volume spin waves by phase-sensitive mode conversion in two-dimensional microstructures. Appl. Phys. Lett. 2013;102(13):132411. DOI: 10.1063/1.4800005.
  15. Davies CS, Francis A, Sadovnikov AV, Chertopalov SV, Bryan MT, Grishin SV, Allwood DA, Sharaevskii YP, Nikitov SA, Kruglyak VV. Towards graded-index magnonics: Steering spin waves in magnonic networks. Phys. Rev. B. 2015;92(2):020408. DOI: 10.1103/PhysRevB.92.020408.
  16. Sadovnikov AV, Davies CS, Grishin SV, Kruglyak VV, Romanenko DV, Sharaevskii YP, Nikitov SA. Magnonic beam splitter: The building block of parallel magnonic circuitry. Appl. Phys. Lett. 2015;106(19):192406. DOI: 10.1063/1.4921206.
  17. Demidov VE, Demokritov SO, Birt D, O’Gorman B, Tsoi M, Li X. Radiation of spin waves from the open end of a microscopic magnetic-film waveguide. Phys. Rev. B. 2009;80(1):014429. DOI: 10.1103/PhysRevB.80.014429.
  18. Dudko GM, Kozhevnikov AV, Khivintsev YV, Filimonov YA, Khitun AG, Nikitov SA. Micro-magnetic simulation of propagation of spin waves in in-plane magnetized crosses based on ferrite microwaveguides of different width. J. Commun. Technol. Electron. 2018;63(10):1212–1216. DOI: 10.1134/S1064226918100091.
  19. Khivintsev YV, Kozhevnikov AV, Sakharov VK, Dudko GM, Filimonov YA, Khitun A. Interference of spin waves in arrays of microwaveguides based on yttrium-iron garnet films. Tech. Phys. 2019;64(11):1622–1628. DOI: 10.1134/S106378421911015X.
  20. Khivintsev YV, Kozhevnikov AV, Dudko GM, Sakharov VK, Filimonov YA, Khitun AG. Spin waves in YIG-based networks: Logic and signal processing. Phys. Metals Metallogr. 2019; 120(13):1318–1324. DOI: 10.1134/S0031918X1913012X.
  21. Gertz F, Kozhevnikov AV, Filimonov YA, Nikonov DE, Khitun A. Magnonic holographic memory: From proposal to device. IEEE Journal on Exploratory Solid-State Computational Devices and Circuits. 2015;1:67–75. DOI: 10.1109/JXCDC.2015.2461618.
  22. Khivintsev Y, Ranjbar M, Gutierrez D, Chiang H, Kozhevnikov A, Filimonov Y, Khitun A. Prime factorization using magnonic holographic devices. J. Appl. Phys. 2016;120(12):123901. DOI: 10.1063/1.4962740.
  23. Balynsky M, Kozhevnikov A, Khivintsev Y, Bhowmick T, Gutierrez D, Chiang H, Dudko G, Filimonov Y, Liu G, Jiang C, Balandin AA, Lake R, Khitun A. Magnonic interferometric switch for multi-valued logic circuits. J. Appl. Phys. 2017;121(2):024504. DOI: 10.1063/1.4973115.
  24. Balynskiy M, Chiang H, Gutierrez D, Kozhevnikov A, Filimonov Y, Khitun A. Reversible magnetic logic gates based on spin wave interference. J. Appl. Phys. 2018;123(14):144501. DOI: 10.1063/1.5011772.
  25. Balinskiy M, Chiang H, Kozhevnikov A, Filimonov Y, Balandin AA, Khitun A. A spin-wave magnetometer with a positive feedback. J. Magn. Magn. Mater. 2020;514:167046. DOI: 10.1016/j.jmmm.2020.167046.
  26. Gutierrez D, Chiang H, Bhowmick T, Volodchenkov AD, Ranjbar M, Liu G, Jiang C, Warren C, Khivintsev Y, Filimonov Y, Garay J, Lake R, Balandin AA, Khitun A. Magnonic holographic imaging of magnetic microstructures. J. Magn. Magn. Mater. 2017;428:348–356. DOI: 10.1016/j.jmmm.2016.12.022.
  27. Chumak AV, Serga AA, Hillebrands B. Magnon transistor for all-magnon data processing. Nature Communications. 2014;5(1):4700. DOI: 10.1038/ncomms5700.
  28. Ustinov AB, Kalinikos BA. The power-dependent switching of microwave signals in a ferrite film nonlinear directional coupler. Appl. Phys. Lett. 2006;89(17):172511. DOI: 10.1063/1.2362576.
  29. Sadovnikov AV, Beginin EN, Morozova MA, Sharaevskii YP, Grishin SV, Sheshukova SE, Nikitov SA. Nonlinear spin wave coupling in adjacent magnonic crystals. Appl. Phys. Lett. 2016;109(4):042407. DOI: 10.1063/1.4960195.
  30. Sadovnikov AV, Odintsov SA, Beginin EN, Sheshukova SE, Sharaevskii YP, Nikitov SA. Toward nonlinear magnonics: Intensity-dependent spin-wave switching in insulating side-coupled magnetic stripes. Phys. Rev. B. 2017;96(14):144428. DOI: 10.1103/PhysRevB.96.144428.
  31. Bracher T, Pirro P. An analog magnon adder for all-magnonic neurons. J. Appl. Phys. 2018; 124(15):152119. DOI: 10.1063/1.5042417.
  32. Wang Q, Kewenig M, Schneider M, Verba R, Kohl F, Heinz B, Geilen M, Mohseni M, Lagel B, Ciubotaru F, Adelmann C, Dubs C, Cotofana SD, Dobrovolskiy OV, Bracher T, Pirro P, Chu-mak AV. A magnonic directional coupler for integrated magnonic half-adders. Nature Electronics. 2020;3(12):765–774. DOI: 10.1038/s41928-020-00485-6.
  33. Nakane R, Tanaka G, Hirose A. Reservoir computing with spin waves excited in a garnet film. IEEE Access. 2018;6:4462–4469. DOI: 10.1109/ACCESS.2018.2794584.
  34. Kozhevnikov АV, Khivintsev YV, Sakharov VК, Dudko GМ, Vysotskii SL, Nikulin YV, Pavlov ЕS, Filimonov YА, Khitun АG. The effect of parametric processes on the propagation of spin waves in cross-shaped structures based on waveguides from yttrium iron garnet films. Izvestiya VUZ. Applied Nonlinear Dynamics. 2019;27(3):9–32 (in Russian). DOI: 10.18500/0869-6632-2019-27-3-9-32.
  35. Kozhevnikov AV, Dudko GM, Khivintsev YV, Sakharov VK, Vysotskii SL, Nikulin YV, Pavlov ES, Khitun AG, Filimonov YA. Magnetic field direction influence on the spectrum of spin waves output signals at three-magnon decay of magnetostatic surface waves in a cross based on waveguides of yttrium iron garnet film. Izvestiya VUZ. Applied Nonlinear Dynamics. 2020;28(2):168–185 (in Russian). DOI: 10.18500/0869-6632-2020-28-2-168-185.
  36. Gurevich АG, Melkov GА. Magnetization Oscillations and Waves. Boca Raton: CRC Press; 1996. 464 p.
  37. Vashkovskiy AV, Stal’makhov VS, Sharaevskii YP. Magnetostatic Waves in Microwave Electronics. Saratov: Saratov State University Publishing House; 1993. 312 p. (in Russian).
  38. Mednikov AM. Nonlinear effects in the propagation of surface spin waves in YIG-films. Sov. Phys. Solid State. 1981;23(1):242–245 (in Russian).
  39. Dudko GM, Khivintsev YV, Sakharov VK, Kozhevnikov AV, Vysotskii SL, Seleznev ME, Filimonov YA, Khitun AG. Micromagnetic modeling of nonlinear interaction of lateral magneto static modes in cross-shaped structures based on waveguides from iron yttrium garnet films. Izvestiya VUZ. Applied Nonlinear Dynamics. 2019;27(2):39–60 (in Russian). DOI: 10.18500/0869-6632-2019-27-2-39-60.
  40. Temiryazev AG. Mechanism of surface magnetostatic wave frequency conversion under three magnon decay conditions. Sov. Phys. Solid State. 1987;29(2):313–319 (in Russian).
  41. Kazakov GT, Kozhevnikov AV, Filimonov YA. The effect of parametrically excited spin waves on the dispersion and damping of magnetostatic surface waves in ferrie films. J. Exp. Theor. Phys. 1999;88(1):174–181. DOI: 10.1134/1.558780.
  42. Kazakov GT, Kozhevnikov AV, Filimonov YA. Stimulation of tree-magnon decay of magnetostatic waves by additional pumping. Tech. Phys. Lett. 1995;21(7):558–560.
Received: 
07.12.2020
Accepted: 
01.02.2021
Published: 
30.09.2021