For citation:
Sadovnikov A. V., Rozhnev A. G. Electrodynamical characteristicsof periodic ferromagnetic structures. Izvestiya VUZ. Applied Nonlinear Dynamics, 2012, vol. 20, iss. 1, pp. 143-159. DOI: 10.18500/0869-6632-2012-20-1-143-159
Electrodynamical characteristicsof periodic ferromagnetic structures
The periodic structure consisting of a shallow grooves on a surface of a ferromagnetic film was investigated. The electrodynamical characteristics of propagation of the surface magnetostatic wave in this structure were obtained. The 2D model of the periodical Yttrium Iron Garnet structure was numerically studied by the algorithm based on the Finite Element method. The spatial distribution of the electric and magnetic field components in different points of dispersion characteristics was studied in detail. The comparison of experimental data and numerical results was carried out.
- Neusser S, Grundler D. Magnonics: Spin waves on the nanoscale. Adv. Mater. 2009;21:2927–2932. DOI: 10.1002/adma.200900809.
- Klos JW, Krawczyk M, Sokolovskyy M. Bulk and edge modes in two-dimensional magnonic crystal slab. Journal of Applied Physics. 2011;109:07D311. DOI: 10.1063/1.3536534.
- Chumak AV, Neumann T, Serga AA, Hillebrands B, Kostylev MP. A current-controlled, dynamic magnonic crystal. J. Phys. D: Appl. Phys. 2009;42:205005. DOI: 10.1088/0022-3727/42/20/205005.
- Stancil D, Prabhakar A. Spin waves. Theory and applications. New York: Springer science; 2009.
- Kruglyak VV, Demokritov SO, Grundler D. Magnonics. J. Phys. D: Appl. Phys. 2010;43(26):264001. DOI: 10.1088/0022-3727/43/26/264001.
- Zenkevich O, Morgan K. Finite Elements and Approximation. New York: John Wiley & Sons; 1983. 328 p.
- Taflove A, Hagness SC. Computational Electrodynamics: The Finite-Difference Time-Domain Method. Norwood. MA: Artech House; 2005.
- Silvester PP, Ferrari RL. Finite Elements for Electrical Engineers: 3rd ed. Cambridge University Press; 1996.
- Landau LD, Lifshitz EM. On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Phys. Z. Soviet Union. 1935;8(2):153–169.
- Landau LD, Lifshitz EM. Electrodynamics of continuous media. Moscow: Nauka; 1982. (in Russian).
- Jin J. The Finite Element Method in Electromagnetics. 2nd ed. Wiley-IEEE Press; 2002.
- Lee JF, Sun DK, Cendes ZJ. Full-wave analysis of dielectric waveguides using tangential vector finite elements. IEEE Trans. MTT. 1991;39(8):1262–1271. DOI: 10.1109/22.85399.
- Sheng XQ, Xu S. An efficient high-order mixed-edge rectangular-elements method for lossy anisotropic dielectric waveguides. IEEE Trans. MTT. 1997;45(7):1009–1013. DOI: 10.1109/22.598434.
- Brovko AV, Rozhnev AG, Manenkov AB. Finite-element model of a fiber-optic polarizer. Radiophysics and Quantum Electronics. 2001;44(7):567–574. DOI: 10.1023/A:1017918102454.
- Valor L, Zapata J. Efficient finite element analysis of waveguides with lossy inhomogeneous anisotropic materials characterized by arbitrary permittivity and permeability tensors. IEEE Trans. Microw. Theory Tech. 1995;43(10):2452–2459. DOI: 10.1109/22.466179.
- Koshiba M, Maruyama S, Hirayama K. A vector finite element method with the high-order mixed-interpolation-type triangular element for optical waveguiding problems. J. Lightw. Technol. 1994;12(3):495–502. DOI: 10.1109/50.285332.
- Damon RW, Eshbach JR. Magnetostatic modes of a ferromagnet slab. J. Phys. Chem. Solids. 1961;19:308–320. DOI: 10.1016/0022-3697(61)90041-5.
- Vashkovskii AV, Stalmakhov AV, Sharaevskii YuP. Magnetostatic waves in microwave electronics. Saratov State University Publ.; 1993. 312 p. (in Russian).
- Beginin EN, Grishin SV, Sharaevskii YuP, Sheshukova SE. Electrodynamic сharacteristics of periodic and fractal waveguide microstructures based on ferrite films. Heteromagnetic Microelectronics. 2011;9:16–28 (in Russian).
- Sirdeshmukh L, Kumar KK, Laxman SB. et al. Dielectric properties and electrical conduction in yttrium iron garnet. Bull. Mater. Sci. 1998;21(3):219–226. DOI: 10.1007/BF02744973.
- Weinstein LA. Electromagnetic waves. Moscow: Radio i Svyaz’; 1988. 440 p. (in Russian).
- Agranovich VM, Ginzburg VL. Crystal optics with allowance for spatial dispersion; exciton theory. I. Sov. Phys. Usp. 1962;5:323–346. DOI: 10.1070/PU1962v005n02ABEH003415.
- 1915 reads