ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Gerus S. V., Lock E. H. Experimental methods for the study of spin waves. Izvestiya VUZ. Applied Nonlinear Dynamics, 2022, vol. 30, iss. 5, pp. 520-533. DOI: 10.18500/0869-6632-003002, EDN: ZYFAEY

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
Full text PDF(En):
Language: 
Russian
Article type: 
Review
UDC: 
537.624; 537.632
EDN: 

Experimental methods for the study of spin waves

Autors: 
Gerus Sergei Valerianovich, Fryazino Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Lock Edwin Harry, Fryazino Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Abstract: 

Purpose of this paper is to give an overview of various experimental methods for investigation of spin waves characteristics. Methods. The paper presents a description of a number of experimental techniques, such as the probing method, the phase shift method, the method of measure of equiphase dependences, the method of intersecting wave beams, and the use of Fourier analysis of the complex transfer coefficient of spin waves to determine their spatial spectrum. The conditions for using the listed methods and the characteristics of spin waves that one can measure by means of these methods are discussed in detail. Results. The paper presents a number of fundamental results that have been obtained on the basis of described methods. For example, the probing method was successfully used to visualize the amplitude and phase distribution of spin waves in the ferrite film plane and, in particular, it was used to experimentally confirm the previously predicted appearance of super-directed propagation of surface and backward volume spin wave beams. The phase-shift measurement method made it possible to measure the dispersion dependence of spin waves in ferrite structures such as ferrite – metal and ferrite – dielectric – metal, where measurements cannot be made by the probing method. The method of measuring equiphase dependences of spin waves made it possible, in particular, to measure for the first time with great accuracy the value of an external magnetic field magnetizing an yttrium iron garnet film to saturation in various crystallographic directions. The method of intersecting wave beams has made it possible to clarify the mechanism of parametric instability of surface spin waves. Fourier analysis of the complex transfer coefficient of spin waves allowed to determine the spatial spectrum of these waves; in particular, dispersion dependences of higher modes of the backward volume spin wave were first measured using this method. Conclusion. The methods described in this paper may continue to be successfully used for investigations of spin waves characteristics in various magnon crystals, ferrite structures and meta-structures.

Acknowledgments: 
This work was performed as part of State Task of Kotelnikov Instutute of Radioengineering and Electronics of Russian Academy of Sciences and with partial financial support from the Russian Foundation for Basic Research (project No. 20-07-00356)
Reference: 
  1. Nikitov SA, Kalyabin DV, Lisenkov IV, Slavin AN, Barabanenkov YN, Osokin SA, Sadovnikov AV, Beginin EN, Morozova MA, Sharaevsky YP, Filimonov YA, Khivintsev YV, Vysotsky SL, Sakharov VK, Pavlov ES. Magnonics: a new research area in spintronics and spin wave electronics. Physics-Uspekhi. 2015;58(10):1002–1028. DOI: 10.3367/UFNe.0185.201510m.1099.
  2. Chumak AV, Vasyuchka VI, Serga AA, Hillebrands B. Magnon spintronics. Nature Physics. 2015;11(6):453–461. DOI: 10.1038/nphys3347.
  3. Wang XS, Zhang HW, Wang XR. Topological magnonics: A paradigm for spin-wave manipulation and device design. Phys. Rev. Appl. 2018;9(2):024029. DOI: 10.1103/PhysRevApplied.9.024029.
  4. Pirro P, Vasyuchka VI, Serga AA, Hillebrands B. Advances in coherent magnonics. Nat. Rev. Mater. 2021;6(12):1114–1135. DOI: 10.1038/s41578-021-00332-w.
  5. Barman A, Gubbiotti G, Ladak S, Adeyeye AO, Krawczyk M, Grafe J, Adelmann C, Cotofana S, Naeemi A, Vasyuchka VI, Hillebrands B, Nikitov SA, Yu H, Grundler D, Sadovnikov AV, Grachev AA, Sheshukova SE, Duquesne JY, Marangolo M, Csaba G, Porod W, Demidov VE, Urazhdin S, Demokritov SO, Albisetti E, Petti D, Bertacco R, Schultheiss H, Kruglyak VV, Poimanov VD, Sahoo S, Sinha J, Yang H, Munzenberg M, Moriyama T, Mizukami S, Landeros P, Gallardo RA, Carlotti G, Kim JV, Stamps RL, Camley RE, Rana B, Otani Y, Yu W, Yu T, Bauer GEW, Back C, Uhrig GS, Dobrovolskiy OV, Budinska B, Qin H, van Dijken S, Chumak AV, Khitun A, Nikonov DE, Young IA, Zingsem BW, Winklhofer M. The 2021 magnonics roadmap. Journal of Physics: Condensed Matter. 2021;33(41):413001. DOI: 10.1088/1361-648x/abec1a.
  6. Chumak A, Kabos P, Wu M, Abert C, Adelmann C, Adeyeye A, Akerman J, Aliev FG, Anane A, Awad A, Back CH, Barman A, Bauer GEW, Becherer M, Beginin EN, Bittencourt VASV, Blanter YM, Bortolotti P, Boventer I, Bozhko DA, Bunyaev SA, Carmiggelt JJ, Cheenikundil RR, Ciubotaru F, Cotofana S, Csaba G, Dobrovolskiy OV, Dubs C, Elyasi M, Fripp KG, Fulara H, Golovchanskiy IA, Gonzalez-Ballestero C, Graczyk P, Grundler D, Gruszecki P, Gubbiotti G, Guslienko K, Haldar A, Hamdioui S, Hertel R, Hillebrands B, Hioki T, Houshang A, Hu CM, Huebl H, Huth M, Iacocca E, Jungfleisch MB, Kakazei GN, Khitun A, Khymyn R, Kikkawa T, Klaui M, Klein O, Klos JW, Knauer S, Koraltan S, Kostylev M, Krawczyk M, Krivorotov IN, Kruglyak VV, Lachance-Quirion D, Ladak S, Lebrun R, Li Y, Lindner M, Macedo R, Mayr S, Melkov GA, Mieszczak S, Nakamura Y, Nembach HT, Nikitin AA, Nikitov SA, Novosad V, Otalora JA, Otani Y, Papp A, Pigeau B, Pirro P, Porod W, Porrati F, Qin H, Rana B, Reimann T, Riente F, Romero-Isart O, Ross A, Sadovnikov AV, Safin AR, Saitoh E, Schmidt G, Schultheiss H, Schultheiss K, Serga AA, Sharma S, Shaw JM, Suess D, Surzhenko O, Szulc K, Taniguchi T, Urbanek M, Usami K, Ustinov AB, van der Sar T, van Dijken S, Vasyuchka VI, Verba R, Viola Kusminskiy S, Wang Q, Weides M, Weiler M, Wintz S, Wolski SP, Zhang X. Roadmap on spin-wave computing. IEEE Transactions on Magnetics. 2022;58(6):0800172. 10.1109/TMAG.2022. 3149664.
  7. Damon RW, Eshbach JR. Magnetostatic modes of a ferromagnet slab. J. Phys. Chem. Solids. 1961;19(3–4):308–320. DOI: 10.1016/0022-3697(61)90041-5.
  8. Danilov VV, Zavislyak IV, Balinsky MG. Spinwave Electrodynamics. Kiev: Libid; 1991. 211 p. (in Russian).
  9. Vashkovskii AV, Stalmakhov VS, Sharaevskii YP. Magnetostatic Waves in Ultrahigh Frequency Electronics. Saratov: Saratov State University Publishing; 1993. 312 p. (in Russian).
  10. Gurevich AG, Melkov GA. Magnetization Oscillations and Waves. Boca Raton: CRC Press; 1996. 464 p.
  11. Kalinikos BA. Dipole-exchange spin-wave spectrum of magnetic films. In: Cottam MG, editor. Linear and Nonlinear Spin Waves in Magnetic Films and Superlattices. Singapore: World Scientific; 1994. P. 89–156.
  12. Gulyaev YV, Nikitov SA. A Bragg reflection of MSSW from periodic ferrite surface area at oblique wave incidence. Soviet Physics, Solid State. 1982;23(12):3678–3679 (in Russian).
  13. Vashkovskii AV, Grechushkin KV, Stalmakhov AV. Spatial-frequency dependences of surface magnetostatic wave energy flux. Sov. J. Commun. Technol. Electron. 1985;30(12):2422–2428 (in Russian).
  14. Vashkovskii AV, Shahnazaryan DG. Surface magnetostatic wave reflection from film edge. Sov. J. Commun. Technol. Electron. 1987;32(4):719–723 (in Russian).
  15. Vashkovskii AV, Zubkov VI, Lokk EG, Shcheglov VI. Effect of inhomogeneity of the permanent magnetic field on surface magnetostatic wave trajectories. Tech. Phys. Lett. 1989;15(4):1–4 (in Russian). 
  16. Annenkov AY, Gerus SV. Analysis of the distribution of magnetostatic surface waves by scanning the surface of a ferrite slab. J. Commun. Technol. Electron. 2012;57(5):519–524. DOI: 10.1134/S1064226912050014.
  17. Annenkov AY, Vinogradov AP, Gerus SV, Ryzhikov IA, Shishkov SA, Inoue M. Investigation of magnetostatic waves in photonic crystals. Bulletin of the Russian Academy of Sciences: Physics. 2007;71(11):1569–1570. DOI: 10.3103/S1062873807110299.
  18. Gerus SV. Magnetostatic waves in spatially periodic and two-dimensional inhomogeneous magnetic fields. Dissertation for the degree of Doctor of Sciences in Physical and Mathematical Sciences. Moscow: Kotel’nikov Instutute of Radio Engineering and Electronics (Fryazino branch), Russian Academy of Sciences; 2010. 317 p. (in Russian).
  19. Annenkov AY, Gerus SV, Kovalev SI. Transformation of surface magnetostatic waves channeled by a step bias field. Tech. Phys. 2002;47(6):737–741. DOI: 10.1134/1.1486198.
  20. Lock EH. Angular beam width of a slit-diffracted wave with noncollinear group and phase velocities. Physics-Uspekhi. 2012;55(12):1239–1254. DOI: 10.3367/UFNe.0182.201212e.1327.
  21. Lokk EG. The angular width of the wave beam of a backward spin wave excited by a linear transducer in a ferrite plate. J. Commun. Technol. Electron. 2015;60(1):97–101. DOI: 10.1134/ S1064226915010106.
  22. Annenkov AY, Gerus SV, Lock EH. Superdirectional beam of surface spin wave. Europhysics Letters. 2018;123(4):44003. DOI: 10.1209/0295-5075/123/44003.
  23. Annenkov AY, Gerus SV, Lock EH. Superdirected beam of the backward volume spin wave. EPJ Web of Conferences. 2018;185:02006. DOI: 10.1051/epjconf/201818502006.
  24. Gerus SV, Lock EH, Annenkov AY. Effect of nonuniform magnetic field That magnetizes a ferrite film on the measurement accuracy for characteristics of spin waves. J. Commun. Technol. Electron. 2021;66(12):1378–1384. DOI: 10.1134/S1064226921120081.
  25. Lock EH. Magnetostatic wave dispersion in a ferrite-metal-strip grating structure. J. Commun. Technol. Electron. 2003;48(12):1369–1378.
  26. Zubkov VI, Lokk EG, Shcheglov VI. Surface magnetostatic wave propagation under a metal bar placed over the surface of a ferrite film. Sov. J. Commun. Technol. Electron. 1989;34(7):1381–1384 (in Russian).
  27. Vashkovskii AV, Zubkov VI, Lebed BM, Lokk EG, Shcheglov VI, Yakovlev SV. Dispersion of surface magnetostatic waves in layered structure ferrite-high-temperature superconductor. Tech. Phys. Lett. 1991;17(9):67–70 (in Russian).
  28. Vashkovskii AV, Zubkov VI, Lokk EG. Propagation of magnetostatic waves in a ferrite plus high-T c superconductor structure in the presence of transport current in the superconductor. Physics of the Solid State. 1997;39(12):1961–1967. DOI: 10.1134/1.1130209.
  29. Lokk EG. Propagation of magnetostatic surface waves in a composite structure composed of a ferrite and a grating of metal strips. J. Commun. Technol. Electron. 2005;50(1):67–74.
  30. Vashkovsky AV, Lock EH. On the relationship between magnetostatic wave energy and dispersion characteristics in ferrite structures. Physics-Uspekhi. 2011;54(3):281–290. DOI: 10.3367/UFNe. 0181.201103c.0293.
  31. Vashkovskii AV, Lokk EG, Shcheglov VI. Influence of induced uniaxial anisotropy on the domain structure and phase transitions of yttrium-iron garnet films. Physics of the Solid State. 1999;41(11):1868–1874. DOI: 10.1134/1.1131115.
  32. Vashkovskii AV, Lokk EG, Shcheglov VI. Propagation of zero-exchange spin waves in ferrite films with domain structure. JETP Lett. 1996;63(7):572–577. DOI: 10.1134/1.567066.
  33. Vashkovskii AV, Lokk EG, Shcheglov VI. Propagation of magnetostatic waves in unsaturated ferrite films with a strip domain structure. J. Exp. Theor. Phys. 1997;84(3):560–568. DOI: 10.1134/ 1.558176.
  34. Vashkovskii AV, Lokk EG, Shcheglov VI. Unexchangeable spin waves in iron yttrium garnet films with stripe domains having magnetisation within them oriented near the film plane. Microelectronics. 1998;27(5):393–395 (in Russian).
  35. Vashkovskii AV, Lokk EG, Shcheglov VI. Hysteresis of the characteristics of magnetostatic waves in ferrite films with stripe domains whose magnetization vectors are oriented close to the plane of the film. J. Exp. Theor. Phys. 1998;87(4):776–787. DOI: 10.1134/1.558721.
  36. Vashkovskii AV, Lokk EG. Observation of a parametric instability of a surface magnetostatic waves. JETP Lett. 1994;60(7):561–564.
  37. Kruglyak VV, Demokritov SO, Grundler D. Magnonics. Journal of Physics D: Applied Physics. 2010;43(26):264001. DOI: 10.1088/0022-3727/43/26/264001.
  38. Sadovnikov AV, Odintsov SA, Beginin EN, Sheshukova SE, Sharaevskii YP, Nikitov SA. Toward nonlinear magnonics: Intensity-dependent spin-wave switching in insulating side-coupled magnetic stripes. Phys. Rev. B. 2017;96(14):144428. DOI: 10.1103/PhysRevB.96.144428. 
Received: 
30.05.2022
Accepted: 
02.06.2022
Published: 
30.09.2022