ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Dmitriev B. S., Zharkov Y. D., Levin Y. I. Experimental research of complex dynamics of on-line multycavity klystron oscillator with delay. Izvestiya VUZ. Applied Nonlinear Dynamics, 2004, vol. 12, iss. 5, pp. 32-38. DOI: 10.18500/0869-6632-2004-12-5-32-38

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 0)
Language: 
Russian
Article type: 
Article
UDC: 
621.391, 621.396

Experimental research of complex dynamics of on-line multycavity klystron oscillator with delay

Autors: 
Dmitriev Boris Savelevich, Saratov State University
Zharkov Yurij Dmitrievich, Saratov State University
Levin Yurij Ivanovich, Saratov State University
Abstract: 

Complex dynamics of the on-line resonant microwave oscillator on a basis of multycavity klystron with delayed feedback is investigated. It is shown, that with the help of an external harmonic signal the control is probable of the klystron oscillations character. Depending on an operating mode of the autonomous generator by selection of frequency and power of an external harmonic signal the modes of dynamic chaos can be received at one-frequency autonomous oscillation and, on the contrary, one-frequency oscillation modes can be received at chaotic autonomous oscillation.

Key words: 
Acknowledgments: 
The work was supported by the grants RFBR (project 03-02-16269) and programm «Университеты России - Фундаментальные Исследования» (project 01.01.049).
Reference: 

1. Dmitriev BS, Zharkov YuD, Klokotov DV, Ryskin NM. Experimental Study of Complex Dynamics in a Delayed-feedback Multiple-cavity Klystron Self-oscillator. Tech. Phys. 2003;73(7):105–110.

2. Dmitriev BS, Zharkov YuD, Klokotov DV, Levin YuI. Nonlinear resonance and transition to chaos in resonance microwave autooscillation systems with delayed feedback. Izvestiya VUZ. Applied Nonlinear Dynamics. 2004;12(1–2):3.

3. Shalfeev VD, Osipov GV, Kozlov AK, Volkovsky AP. Chaotic oscillations – generation, synchronization, control Zarub. Radioélektron. Usp. Sovremen. Radioélektron. 1997;10:27–49.

4. Kalyanov EV. Stochastization and destochastization of oscillations in non-autonomous multimode self-oscillating systems. Journal of Communications Technology and Electronics. 1982;27(12):2448–2453.

5. Kozlov AK, Shalfeev VD. Controlling chaotic oscillations in delayed phase-locked loop. Izvestiya VUZ. Applied Nonlinear Dynamics. 1994:2(2):36–48.

6. Kalinin VI, Zalogin NN, Kislov VYa. Nonlinear resonance and stochasticity in a self-oscillatory system with delay. Radiotekhnika i elektronika. 1983;28(10): 2001–2007.

Received: 
24.02.2004
Accepted: 
15.09.2004
Published: 
23.03.2005