ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Ovchinnikov A. A. Experimental study of type I intermittency in a generator synchronized with external harmonic signal in the presence of noise. Izvestiya VUZ. Applied Nonlinear Dynamics, 2009, vol. 17, iss. 6, pp. 119-124. DOI: 10.18500/0869-6632-2009-17-6-119-124

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 75)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
530.182

Experimental study of type I intermittency in a generator synchronized with external harmonic signal in the presence of noise

Autors: 
Ovchinnikov Aleksej Aleksandrovich, Saratov State University
Abstract: 

Аn experimental study of statistical properties of type I intermittency in the presence of noise is presented. For the first time an electronic experiment to study periodic oscillations synchronization destruction in case of small detuning in the presence of noise is held. The results are found to be in accordance with theory. 

Reference: 
  1. Berge P, Pomeau Y, Vidal C. L’Ordre Dans Le Chaos. Paris: Hermann; 1988. 353 p.
  2. Pikovsky AS, Osipov GV, Rosenblum MG, Zaks M, Kurths J. Attractor–repeller collision and eyelet intermittency at the transition to phase synchronization. Phys. Rev. Lett. 1997;79(1):47--50. DOI: 10.1103/PHYSREVLETT.79.47.
  3. Platt N, Spiegel EA, Tresser C. On-off intermittency: A mechanism for bursting. Phys Rev Lett. 1993;70(3):279--282. DOI: 10.1103/PhysRevLett.70.279.
  4. Hramov AE, Koronovskii AA, Kurovskaya MK, Boccaletti S. Ring intermittency in coupled chaotic oscillators at the boundary of phase synchronization. Phys Rev Lett. 2006;97(11):114101. DOI: 10.1103/PhysRevLett.97.114101.
  5. Rosenblum MG, Pikovsky AS, Kurths J. Phase synchronization of chaotic oscillators. Phys Rev Lett. 1996;76(11):1804--1807. DOI: 10.1103/PhysRevLett.76.1804.
  6. Koronovsky AA, Kurovskaya MK, Moskalenko OI, Temov AE. Two scenarios of the destruction of the chaotic phase synchronization mode. Technical Physics. 2007;77(1):21–29.
  7. Hramov AE, Koronovskii AA, Kurovskaya MK. Two types of phase synchronization destruction. Phys Rev E Stat Nonlin Soft Matter Phys. 2007;75(3):036205. DOI: 10.1103/PhysRevE.75.036205.
  8. Bogdankevich LS, Rukhadze AA. Stability of relativistic electron beams in a plasma and the problem of critical currents. Phys. Usp. 1971;14(2):163–179. DOI: UFNr.0103.197104c.0609.
  9. Mangioni S, Deza R, Wio H, Toral R. Disordering effects of color in nonequilibrium phase transitions induced by multiplicative noise. Phys. Rev. Lett. 1997;79(13):2389--2393. DOI: 10.1103/PhysRevLett.79.2389.
  10. Zhou C, Kurths J, Kiss IZ, Hudson JL. Noise-enhanced phase synchronization of chaotic oscillators. Phys Rev Lett. 2002;89(1):014101. DOI: 10.1103/PhysRevLett.89.014101.
  11. Kye WH, Kim CM. Characteristic relations of type-I intermittency in the presence of noise. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000;62(5):6304--6307. DOI: 10.1103/physreve.62.6304.
  12. Hramov AE, Koronovskii AA, Kurovskaya MK, Ovchinnikov AA, Boccaletti S. Length distribution of laminar phases for type-I intermittency in the presence of noise. Phys. Rev. E. 2007;76(2):026206.
  13. Dmitriev AS, Panas AI. Dynamic chaos: new information carriers for communication systems. Moscow: Fizmatlit; 2002. 251 p. (In Russian).
  14. Rulkov NF. Images of synchronized chaos: Experiments with circuits. Chaos. 1996;6(3):262--279. DOI: 10.1063/1.166174.
Received: 
23.12.2008
Accepted: 
15.09.2009
Published: 
31.12.2009
Short text (in English):
(downloads: 53)