ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Izmailov I. V., Poizner B. N. Experiments with a source of chaos – a radio­electronic device with square­law phase modulator and interference amplification of quasi­harmonic signal. Izvestiya VUZ. Applied Nonlinear Dynamics, 2010, vol. 18, iss. 2, pp. 39-50. DOI: 10.18500/0869-6632-2010-18-2-39-50

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 113)
Language: 
Russian
Article type: 
Article
UDC: 
531.86 + 621.3

Experiments with a source of chaos – a radio­electronic device with square­law phase modulator and interference amplification of quasi­harmonic signal

Autors: 
Izmailov Igor Valerevich, National Research Tomsk State University
Poizner Boris Nikolaevich, National Research Tomsk State University
Abstract: 

A modified radio­electronic analog of the nonlinear ring cavity is realized in laboratory. The device represents a special class of oscillations or waves sources. An operation principle of the sources is based on interference amplification of feedback signal by an input signal. A laboratory experiments are performed, the likeness of their results and simulation data is shown. An intermittency, chaos, regular, static modes are detected. A thesis on controlled nonlinearity of dynamical systems is suggested.

Reference: 
  1. Izmajlov IV, Poizner BN. Chaos in radio device with square­law phase modulator and interference amplification of quasi­harmonic signal: a model and simulation. Izvestiya VUZ. Applied Nonlinear Dynamics. 2010;18(1):61–79. DOI: 10.18500/0869-6632-2010-18-1-61-79. (in Russian).
  2. Ikeda K. Multiple-valued stationary state and its instability of the transmitted light by ring cavity system. Opt. Comm. 1979;30(2):257–261. DOI: 10.1016/0030-4018(79)90090-7.
  3. Neimark YuI, Landa PS. Stochastic and Chaotic Oscillations. Moscow: Nauka; 1987. (in Russian).
  4. Kuznetsov SP. Dynamical Chaos: Course of Lectures. Moscow: Fizmatlit; 2001. 296 p. (in Russian).
  5. Carmon T, Buljan H, Segev M. Spontaneous pattern formation in a cavity with incoherent light. Optics Express. 2004;12(15):3481–3487. DOI: 10.1364/opex.12.003481.
  6. Akhmanov SA, Vorontsov MA. (Eds.) New Physical Principles of Optical Information Processing. Moscow: Nauka; 1990. 400 pp. (in Russian).
  7. Rozanov NN. Optical Bistability and Hysteresis in Distributed Nonlinear Systems. Moscow: Nauka; 1997. (in Russian).
  8. Ryskin NM, Khavroshin OS. Controlling chaos in Ikeda system. Symplified discrete map model. Izvestiya VUZ. Applied Nonlinear Dynamics. 2009;17(2):66–86 (in Russian). DOI: 10.18500/0869-6632-2009-17-2-66-86.
  9. Ryskin NM, Havroshin OS. Controlling chaos in Ikeda system. Spatio–temporal model. Izvestiya VUZ. Applied Nonlinear Dynamics. 2009;17(2):87–98 (in Russian). DOI: 10.18500/0869-6632-2009-17-2-87-98.
  10. Izmailov IV,  Lyachin AV, Poizner BN. Deterministic Chaos in Models of a Nonlinear Ring Interferometer. Tomsk: Tom. Univ.; 2007. (in Russian).
  11. Ponomarenko VP. Dynamical regimes and nonlinear phenomena in generator with frequency-phase control. Izvestiya VUZ. Applied Nonlinear Dynamics. 2008;16(6):18–40 (in Russian). DOI: 10.18500/0869-6632-2008-16-6-18-40.
  12. Izmaylov IV, Poizner BN. Generation of nonlinearity to increase the variety of systems with dynamic and static instability. Russian Physics Journal. 2010;53(2):123–127. DOI: 10.1007/s11182-010-9396-z.
Received: 
16.06.2009
Accepted: 
05.09.2009
Published: 
30.04.2010
Short text (in English):
(downloads: 97)