ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Baranov S. V., Kuznetsov S. P. Hyperchaos in a system with delayed feedback loop based on Q-switched van der Pol oscillator. Izvestiya VUZ. Applied Nonlinear Dynamics, 2010, vol. 18, iss. 4, pp. 111-120. DOI: 10.18500/0869-6632-2010-18-4-111-120

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 207)
Article type: 

Hyperchaos in a system with delayed feedback loop based on Q-switched van der Pol oscillator

Baranov Stanislav Vladimirovich, Saratov State University
Kuznetsov Sergey Petrovich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences

We present a way to realize hyperchaotic behavior for a system based on Q-switched van der Pol oscillator with non-linear signal transformation in the delayed feedback loop. The results of numerical studies are discussed: time dependences of variables, attractor portraits, Lyapunov exponents, and power spectrum. 

  1. Kuznetsov SP, Ponomarenko VI. Realization of a strange attractor of the Smale–Williams type in a radiotechnical delay-fedback oscillator. Technical Physics Letters. 2008;34(9):771–773.
  2. Rossler OE. An equation for hyperchaos. Phys. Lett. A. 1979;71(2–3):155–157. DOI: 10.1016/0375-9601(79)90150-6.
  3. Kuznetsov SP. Dynamical chaos. 2nd ed. Moscow: Fizmatlit; 2006. 356 p. (in Russian).
  4. Farmer DJ. Chaotic attractors of an infinite-dimensional dynamical system. Physica D. Nonlinear Phenomena. 1980;4(3):366–393. DOI: 10.1016/0167-2789(82)90042-2.
  5. Baljakin AA, Ryskin NM. Peculiarities of calculation of the Lyapunov exponents set in distributed self-oscillated systems with delayed feedback. Izvestiya VUZ. Applied Nonlinear Dynamics. 2007;15(6):3–21. DOI: 10.18500/0869-6632-2007-15-6-3-21.
  6. Sveshnikov AA. Applied methods of the theory of random functions. Moscow: Nauka, Fizmatlit; 1968. 464 p. (in Russian).
  7. Kuznetsov SP. Example of a physical system with a hyperbolic attractor of the Smale–Williams type. Phys. Rev. Lett. 2005;95(14):144101. DOI: 10.1103/PhysRevLett.95.144101.
  8. Kuznetsov SP, Seleznev EP. A strange attractor of the Smale-Williams type in the chaotic dynamics of a physical system. Journal of Experimental and Theoretical Physics. 2006;102:355–364. DOI: 10.1134/S1063776106020166.
  9. Kuznetsov AP, Kuznetsov SP, Pikovsky AS, Turukina LV. Chaotic dynamics in the systems of coupling nonautonomous oscillators with resonance and nonresonance communicator of the signal. Izvestiya VUZ. Applied Nonlinear Dynamics. 2007;15(6):75–85. DOI: 10.18500/0869-6632-2007-15-6-75-85.
  10. Kuznetsov SP, Pikovsky AS. Hyperbolic chaos in the phase dynamics of a Q-switched oscillator with delayed nonlinear feedbacks. Europhysics Letters. 2008;84(1):10013. DOI: 10.1209/0295-5075/84/10013.
  11. Bunimovich LA, Sinai YaG. Spacetime chaos in coupled map lattices. Nonlinearity. 1988;1(4):491–516. DOI: 10.1088/0951-7715/1/4/001.
  12. Kuptsov PV, Kuznetsov SP. Violation of hyperbolicity in a diffusive medium with local hyperbolic attractor. Phys. Rev. E. 2009;80:016205. DOI: 10.1103/PhysRevE.80.016205.
Short text (in English):
(downloads: 82)