ISSN 0869-6632 (Online)
ISSN 2542-1905 (Print)


Cite this article as:

Grigoreva E. V., Kashenko I. S., Kashenko S. A. Hypermultistability in laser’s models with large delay. Izvestiya VUZ. Applied Nonlinear Dynamics, 2011, vol. 19, iss. 3, pp. 3-15. DOI: https://doi.org/10.18500/0869-6632-2011-19-3-3-15

Language: 
Russian

Hypermultistability in laser’s models with large delay

Autors: 
Grigoreva Elena Viktorovna, Belarusian State Economic University (BSEU)
Kashenko Ilja Sergeevich, Federal State Budget Educational Institution of Higher Professional Education "Yaroslavl State University named after PG Demidov"
Kashenko Sergej Aleksandrovich, Federal State Budget Educational Institution of Higher Professional Education "Yaroslavl State University named after PG Demidov"
Abstract: 

We study model of monomode semiconductor laser with optoelectronic feedback, based on balanced equations with delay. We built sets of quasinormal forms in neighboorghood of bifurcation values. The possibility of coexistence of large amount of stable oscillating solutions is shown

Key words: 
DOI: 
10.18500/0869-6632-2011-19-3-3-15
References: 

1. Yanchuk S., Perlikowski P. Delay and periodicity // Phys. Rev. E. 2009. Vol. 79. 046221. 2. Loose A., Goswami B.K., Wunsche H.-J., Henneberger F. Tristability of a semiconductor laser due to time-delayed optical feedback // Phys. Rev. E. 2009. Vol. 79. 036211. 3. Erneux T., Grasman J. Limit-cycle oscillators subject to a delayed feedback // Phys. Rev. E. 2008. Vol. 78. 026209. 4. Grigorieva E.V., Kaschenko S.A., Loiko N.A., Samson A.M. Nonlinear dynamics in a laser with a negative delayed feedback // Physica D. 1992. Vol. 59. P. 297. 5. Grigorieva E.V., Kaschenko S.А. Regular and chaotic pulsations in lazer diode with delayed feedback // Bifurcations and chaos. 1993. Vol. 6. P. 1515. 6. Wolfrum M., Yanchuk S. Eckhaus instability in systems with large delay // Phys. Rev. Letters. 2006. Vol. 96. 220201. 7. Paoli T.L., Ripper L.E. Frequency stabilization and narrowing of optical pulses from CW GaAs injection lasers // IEEE J. Quan. Electron. 1970. Vol. QE–6. P. 335. 8. Giacomelli G., Calzavara M., Arecchi F.T. Instabilities in a semiconductor laser with delayed optoelectronic feedback // Opt. Commun. 1989. Vol. 74. P. 97. 9. Arecchi F.T., Giacomelli G., Lapucci A., Meucci R. Dynamics of a CO2 laser with delayed feedback: The short-delayed regime // Phys. Rev. A. 1991. Vol. 43. P. 4997. 10. Кащенко С.А. Исследование методами большого параметра системы нелинейных дифференциально-разностных уравнений, моделирующих задачу хищник–жертва // Докл. АН СССР 1982. Т. 266, No 4. С. 792. 11. Кащенко С.А. Об установившихся режимах уравнения Хатчинсона с диффузией // ДАН СССР. 1987. Т. 292, No 2. С. 327. 12. Бутузов В.Ф., Васильева А.Б. Асимптотические разложения решений сингулярно возмущенных уравнений. М.: Наука, 1973. 13. Grigorieva E.V., Haken H., Kaschenko S.A. Theory of quasiperiodicity in model of lasers with delayed optoelectronic feedback // Optics Commun. 1999. Vol. 165. P. 279. 14. Bestehorn M., Grigorieva E.V., Haken H. and Kaschenko S.A. Order parameters for class-B lasers with a long time delayed feedback // Physica D. 2000. Vol. 145. P. 111. 15. Кащенко С.А. О квазинормальных формах для параболических уравнений с малой диффузией // ДАН СССР. 1988. Т. 299, No 5. С. 1049. 16. Кащенко С.А. О коротковолновых бифуркациях в системах с малой диффузией // Докл. АН СССР. 1989. Т. 307, No 2. С. 269. 17. Кащенко С.А. Применение метода нормализации к изучению динамики дифференциально-разностных уравнений с малым множителем при производной // Дифференциальные уравнения. 1989. Т. 25, No 8. 18. Kaschenko S.A. Normalization in the systems with small diffusion // International Journal of Bifurcations and chaos. 1996. Vol. 6, No 7. P. 1093. 19. Кащенко С.А. Уравнения Гинзбурга–Ландау – нормальная форма для дифференциально-разностного уравнения второго порядка с большим запаздыванием // Журнал вычисл.матем. и матем. физ. 1998. Т. 38, No 3. С. 457. 20. Новое в синергетике: взгляд в третье тысячелетие. М.: Российская академия наук и издательство «Наука», 2002. 478 с. 21. Кащенко И.С. Асимптотический анализ поведения решений уравнения с большим запаздыванием // Доклады Академии Наук. 2008. Т. 421, No 5. С. 586. 22. Кащенко И.С. Локальная динамика уравнений с большим запаздыванием // Журнал вычислительной математики и математической физики. 2008. Т. 48, No 12. С. 2141. 23. Кащенко И.С. Буферность в уравнениях второго порядка с большим запаздыванием // Моделирование и анализ информационных систем. Ярославль, 2008. Т. 15, No 2. С. 31.  

Short text (in English): 
Full text: