ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Koryukin I. V. Identical chaotic synchronization and bidirectional message transmission in incoherently coupled semiconductor laser diodes. Izvestiya VUZ. Applied Nonlinear Dynamics, 2010, vol. 18, iss. 3, pp. 60-69. DOI: 10.18500/0869-6632-2010-18-3-60-69

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 193)
Language: 
Russian
Article type: 
Article
UDC: 
621.373.826

Identical chaotic synchronization and bidirectional message transmission in incoherently coupled semiconductor laser diodes

Autors: 
Koryukin Igor Valerevich, Institute of Applied Physics of the Russian Academy of Sciences
Abstract: 

A chaos-based communication scheme allowing simultaneous bidirectional message transmission (Opt. Lett. 32, 403, 2007) is investigated numerically. Incoherent feedback and coupling case is analyzed, which is expected in real long-distance optical communication systems. It is shown that identical synchronization of chaotic laser waveforms and bidirectional message transmission are possible as in the coherent coupling case. However, the chaotic regime at incoherent feedback and coupling is quite different. It is regular destabilized relaxation oscillations with the chaotic envelope. Such dynamics leads to restriction of the transmitting signal bit rate by a portion of relaxation oscillations frequency.

Reference: 
  1. Pecora LM, Carroll TL. Synchronization in chaotic systems. Phys. Rev. Lett. 1990;64(8):821–824. DOI: 10.1103/PhysRevLett.64.821.
  2. Colet P, Roy R. Digital communication with synchronized chaotic lasers. Opt. Lett. 1994;19(24):2056–2058. DOI: 10.1364/ol.19.002056.
  3. Dmitriev AS, Panas AI. Dynamic Chaos: Novel Type of Information Carrier for Communications Systems. Moscow: Fizmatlit; 2002.
  4. Koronovskii AA, Moskalenko OI, Hramov AE. On the use of chaotic synchronization for secure communication. Phys. Usp. 2009;52(12):1213–1238.
  5. Mirasso CR, Colet P, Garcia-Fernandez P. Synchronization of chaotic semiconductor lasers: Application to encoded communications. IEEE Phot. Tech. Lett. 1996;8(2):299–301. DOI10.1109/68.484273.
  6. Takiguchi Y, Fujino H, Ohtsubo J. Experimental synchronization of chaotic oscillations in externally injected semiconductor lasers in a low-frequency fluctuation regime. Opt. Lett. 1999;24(22):1570–1572. DOI: 10.1364/ol.24.001570.
  7. Sivaprakasam S, Shore KA. Demonstration of optical synchronization of chaotic external-cavity laser diodes. Opt. Lett. 1999;24:466–468. DOI: 10.1364/ol.24.000466.
  8. Sivaprakasam S, Shore KA. Message encoding and decoding using chaotic external-cavity diode lasers. IEEE J. Quant. Electron. 2000;36(1):35–39. DOI: 10.1109/3.817636.
  9. Fischer I, Liu Y, Davis P. Synchronization of chaotic semiconductor laser dynamics on subnanosecond time scales and its potential for chaos communication. Phys. Rev. A. 2000;62(1):011801(R). DOI: 10.1103/PhysRevA.62.011801.
  10. Tang S, Liu JM. Effects of message encoding and decoding on synchronized chaotic optical communications. IEEE J. Quant. Electron. 2003;39(11):1468–1475. DOI: 10.1109/JQE.2003.818278.
  11. Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer I, Garcia-Ojalvo J, Mirasso CR, Pesquera L, Shore KA. Chaos-based communications at high bit rates using commercial fibre-optic links. Nature. 2005;238:343–346. DOI: 10.1038/nature04275.
  12. Ponomarenko VI, Prokhorov MD, Koryukin IV. Estimating the parameters of semiconductor optical-feedback lasers from time series. Technical Physics Letters. 2005;31(11):939–942. DOI: 10.1134/1.2136959.
  13. Heil T, Fischer I, Elsasser W, Mulet J, Mirasso C. Chaos synchronization and spontaneous symmetry-breaking in symmetrically delay-coupled semiconductor lasers. Phys. Rev. Lett. 2001;86(5):795–798. DOI: 10.1103/PhysRevLett.86.795.
  14. Klein E, Gross N, Kopelowitz E, Rosenbluh M, Khaykovich L, Kinzel W, Kanter I. Public-channel cryptography based on mutual chaos pass filters. Phys. Rev. E. 2006;74:046201. DOI: 10.1103/PhysRevE.74.046201.
  15. Kanter I, Gross N, Klein E, Kopelowitz E, Yoskovits P, Khaykovich L, Kinzel W, Rosenbluh M. Synchronization of mutually coupled chaotic lasers in the presence of a shutter. Phys. Rev. Lett. 2007;98(15):154101. DOI: 10.1103/PhysRevLett.98.154101.
  16. Vicente R, Mirasso CR, Fischer I. Simultaneous bidirectional message transmission in a chaos-based communication scheme. Opt. Lett. 2007;32(4):403–405. DOI: 10.1364/ol.32.000403.
  17. Grigorieva EV, Kaschenko S, Loiko NA, Samson AM. Nonlinear dynamics in a laser with a negative delayed feedback. Physica D. 1992;59:297–319. DOI: 10.1016/0167-2789(92)90072-U.
  18. Pieroux D, Mandel P. Low-frequency pulsations in class-B solid-state lasers with delayed feedback. Opt. Lett. 2002;27:1528–1530. DOI: 10.1364/ol.27.001528.
  19. Hairer E, Nersett S, Vanner G. Solving Ordinary Differential Equations. Non-rigid tasks. Moscow: Mir; 1990. 512 p. (in Russian); http://www.unige.ch/hairer/software.html.
  20. Khanin YaI. Fundamentals of laser dynamics. Moscow: Nauka, Fizmatlit; 1999. 368 p. (in Russian).
  21. Hamming RW. Digital filters. Trans. from English. Ed by Trakhtman AM. Moscow: Sov. Radio; 1980. (in Russian).
Received: 
22.01.2010
Accepted: 
12.03.2010
Published: 
30.06.2010
Short text (in English):
(downloads: 75)