ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Ljachin A. V., Magazinnikov A. L., Poizner B. N. Identification of processes in the model of ring interferometer when optical field is rotated through 120°. Izvestiya VUZ. Applied Nonlinear Dynamics, 2002, vol. 10, iss. 6, pp. 71-80. DOI: 10.18500/0869-6632-2002-10-6-71-80

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 0)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
535:530.182 + 519.713

Identification of processes in the model of ring interferometer when optical field is rotated through 120°

Autors: 
Ljachin Aleksandr Vladimirovich, National Research Tomsk State University
Magazinnikov Anton Leonidovich, National Research Tomsk State University
Poizner Boris Nikolaevich, National Research Tomsk State University
Abstract: 

The possible regimes in model of processes in nonlinear ring interferometer when optical field is rotated through 120° in transversal plane are identified. The map of dynamic regimes is constructed. The map represents areas of parameters of this system where е steady stationary point, limit cycle, strange chaotic attractor аге realized Conclusion is illustrated by phase portraits, amplitude Fourier spectra, auto-correlation functions of the processes, dependence of Lyapunov’s characteristic exponents from parameters of this system. Correlation dimension of attractors is evaluated.

Key words: 
Acknowledgments: 
The authors are deeply grateful for the provision of computing resources to A.V. Romensky and A.A. Zhukov, as well as to S.N. Vladimir and I.V. Izmailov for the provided software and advice. The authors gratefully admit that they helped them with their advice P.S. Landa. The authors are grateful to the reviewer for the careful analysis of the article and the critical comments that helped to correct the shortcomings.
Reference: 

1. Trubetskov DI. Fluctuations and Waves for Humanists: A Textbook for Universities. Saratov: «College»; 1997. 392 p. (in Russian).
2. Ram RJ, Sporer R, Blank H-Ri, York RА. Chaotic dynamics in coupled microwave oscillators. IЕЕЕ Trans. Microw. Theory Tech. 2000;48(11):1909–1916. DOI: 10.1109/22.883871.
3. Pantsyrev MA, Mukavitsa KA, Shakhtarin BI. Study of chaotic regimes of a non-autonomous 2nd order Costas system under excitation of FM signals. Scientific Bulletin of MSTU GA. 2000;(31):101 (in Russian).
4. Anishchenko VS. Attractors of dynamical systems (lecture). Izvestiya VUZ. Applied Nonlinear Dynamics. 1997;5(1):109 (in Russian).
5. Kuznetsov AP, Kuznetsov SP. Critical dynamics for one-dimensional maps part 1: Feigenbaum's scenario. Izvestiya VUZ. Applied Nonlinear Dynamics. 1993;1(1):15–33 (in Russian).
6. Kuznetsov AP, Kuznetsov SP, Sataev IR. Critical dynamics of one-dimensional mappings. Part 2. Two-parameter transition to chaos. Izvestiya VUZ. Applied Nonlinear Dynamics. 1993;1(3):17–35 (in Russian).
7. Yemets SV, Starkov SO. Application of digital signal processors for generating chaotic signals and transmitting information using chaos. Izvestiya VUZ. Applied Nonlinear Dynamics. 1999;7(2–3):95 (in Russian).
8. Vladimirov SN, Negrul VV. Comparative analysis of some chaotic synchronous communication systems. Izvestiya VUZ. Applied Nonlinear Dynamics. 2000;8(6):53–64 (in Russian).
9. Pavlov AY, Yanson NB, Anishchenko VS, Gridnev VI, Dovgalevsky PY. Diagnosis of cardiovascular pathology by calculating the highest Lyapunov exponent using a sequence of RR intervals. Izvestiya VUZ. Applied Nonlinear Dynamics. 1998;6(2):3 (in Russian).
10. Mensour B, Longtin A. Power spectra and dynamical invariants for delay-differential and difference equations. Physica D. 1998;113(1):1–25. DOI: 10.1016/S0167-2789(97)00185-1.
11. Neimark YI, Landa PS. Stochastic and Chaotic Oscillations. Dordrecht: Springer; 1992. 500 p. DOI: 10.1007/978-94-011-2596-3.
12. Magazinnikov AL, Poizner VN, Sabdenov KO, Timokhin AM. Triple of Kerr media in a nonlinear interferometer: factors influencing bifurcation behavior. Izvestiya VUZ. Applied Nonlinear Dynamics. 1998;6(5):56–65 (in Russian).
13. Vorontsov MA, Koryabin AV, Shmalgauzen VI. Controlled Optical Systems. Moscow: Nauka; 1989. 216 p. (in Russian).
14. Garcia-Ojalvo J, Roy R. Spatiotemporal communication with synchronized optical chaos [Electronic resource]. Available from: http:/xxx.lanl.gov/abs/nlin.CD/0011012.
15. Chesnokov SS, Rybak AA. Spatiotemporal chaotic behavor of time-delayed nonlinear optical systems. Laser Phys. 2000;10(5):1061–1068.
16. Izmailov IV, Shulepov MA. Simulation of signal enciphering by means оf nonlinear ring interferometer and decoding. In: Kulchin YN, Vitrik OB, editors. Proceedings of SPIE. Vol. 4513. Optoelectronic Information Systems and Processing (11-15 September, 2000, Vladivostok, Russia). SPIE; 2001. P. 46–51. 10.1117/12.435899.
17. Izmailov IV, Poizner BN. Implementation options for a nonlinear optical device for covert information transmission. Atmospheric and Oceanic Optics. 2001;14(11):1074–1086 (in Russian).
18. Arshinov AI, Mudarisov RR, Poizner BN. Triple of Kerr media in a ring interferometer: the role of non-identity. Izvestiya VUZ. Applied Nonlinear Dynamics. 1995;3(1):20–27 (in Russian).
19. Akhmanov SA, Vorontsov MA, editors. New Physical Principles of Optical Information Processing: Collection of Articles. Moscow: Nauka; 1990. P. 13–33; 263–326 (in Russian).
20. Anishchenko VS, Vadivasova TE, Astakhov VV. Nonlinear Dynamics of Chaotic and Stochastic Systems. Fundamental Principles and Selected Problems. Saratov: Saratov University Publishing; 1999. 368 p. (in Russian).
21. Loskutov AY, Mikhailov AS. Foundations of Synergetics. 2nd edition. Berlin: Springer; 1996. 278 p. DOI: 10.1007/978-3-642-80196-9.
22. Malinetsky GG, Potapov AB. Modern Problems of Nonlinear Dynamics. Moscow: Editorial URSS; 2000. 336 p. (in Russian).
23. Moon FC. Chaotic and Fractal Dynamics. New York: John Wiley; 1992. 508 p. DOI: 10.1002/9783527617500.
24. Magazinnikov AL, Poizner BN. Regular and chaotic processes in the model of a ring optical system. Teaching Physics in Higher Education. 2000;(19):103–106 (in Russian).
25. FRACTAN 3.6. Fractal Analysis [Electronic resource]. Available from: http:/fractan.boom.ru/fractan/fractan.zip.
26. Schuster HG. Deterministic Chaos: An Introduction. Weinheim: Physik-Verlag; 1984. 220 p.

Received: 
15.01.2002
Accepted: 
09.09.2002
Published: 
10.02.2003