For citation:
Ljachin A. V., Magazinnikov A. L., Poizner B. N. Identification of processes in the model of ring interferometer when optical field is rotated through 120°. Izvestiya VUZ. Applied Nonlinear Dynamics, 2002, vol. 10, iss. 6, pp. 71-80. DOI: 10.18500/0869-6632-2002-10-6-71-80
Identification of processes in the model of ring interferometer when optical field is rotated through 120°
The possible regimes in model of processes in nonlinear ring interferometer when optical field is rotated through 120° in transversal plane are identified. The map of dynamic regimes is constructed. The map represents areas of parameters of this system where е steady stationary point, limit cycle, strange chaotic attractor аге realized Conclusion is illustrated by phase portraits, amplitude Fourier spectra, auto-correlation functions of the processes, dependence of Lyapunov’s characteristic exponents from parameters of this system. Correlation dimension of attractors is evaluated.
1. Trubetskov DI. Fluctuations and Waves for Humanists: A Textbook for Universities. Saratov: «College»; 1997. 392 p. (in Russian).
2. Ram RJ, Sporer R, Blank H-Ri, York RА. Chaotic dynamics in coupled microwave oscillators. IЕЕЕ Trans. Microw. Theory Tech. 2000;48(11):1909–1916. DOI: 10.1109/22.883871.
3. Pantsyrev MA, Mukavitsa KA, Shakhtarin BI. Study of chaotic regimes of a non-autonomous 2nd order Costas system under excitation of FM signals. Scientific Bulletin of MSTU GA. 2000;(31):101 (in Russian).
4. Anishchenko VS. Attractors of dynamical systems (lecture). Izvestiya VUZ. Applied Nonlinear Dynamics. 1997;5(1):109 (in Russian).
5. Kuznetsov AP, Kuznetsov SP. Critical dynamics for one-dimensional maps part 1: Feigenbaum's scenario. Izvestiya VUZ. Applied Nonlinear Dynamics. 1993;1(1):15–33 (in Russian).
6. Kuznetsov AP, Kuznetsov SP, Sataev IR. Critical dynamics of one-dimensional mappings. Part 2. Two-parameter transition to chaos. Izvestiya VUZ. Applied Nonlinear Dynamics. 1993;1(3):17–35 (in Russian).
7. Yemets SV, Starkov SO. Application of digital signal processors for generating chaotic signals and transmitting information using chaos. Izvestiya VUZ. Applied Nonlinear Dynamics. 1999;7(2–3):95 (in Russian).
8. Vladimirov SN, Negrul VV. Comparative analysis of some chaotic synchronous communication systems. Izvestiya VUZ. Applied Nonlinear Dynamics. 2000;8(6):53–64 (in Russian).
9. Pavlov AY, Yanson NB, Anishchenko VS, Gridnev VI, Dovgalevsky PY. Diagnosis of cardiovascular pathology by calculating the highest Lyapunov exponent using a sequence of RR intervals. Izvestiya VUZ. Applied Nonlinear Dynamics. 1998;6(2):3 (in Russian).
10. Mensour B, Longtin A. Power spectra and dynamical invariants for delay-differential and difference equations. Physica D. 1998;113(1):1–25. DOI: 10.1016/S0167-2789(97)00185-1.
11. Neimark YI, Landa PS. Stochastic and Chaotic Oscillations. Dordrecht: Springer; 1992. 500 p. DOI: 10.1007/978-94-011-2596-3.
12. Magazinnikov AL, Poizner VN, Sabdenov KO, Timokhin AM. Triple of Kerr media in a nonlinear interferometer: factors influencing bifurcation behavior. Izvestiya VUZ. Applied Nonlinear Dynamics. 1998;6(5):56–65 (in Russian).
13. Vorontsov MA, Koryabin AV, Shmalgauzen VI. Controlled Optical Systems. Moscow: Nauka; 1989. 216 p. (in Russian).
14. Garcia-Ojalvo J, Roy R. Spatiotemporal communication with synchronized optical chaos [Electronic resource]. Available from: http:/xxx.lanl.gov/abs/nlin.CD/0011012.
15. Chesnokov SS, Rybak AA. Spatiotemporal chaotic behavor of time-delayed nonlinear optical systems. Laser Phys. 2000;10(5):1061–1068.
16. Izmailov IV, Shulepov MA. Simulation of signal enciphering by means оf nonlinear ring interferometer and decoding. In: Kulchin YN, Vitrik OB, editors. Proceedings of SPIE. Vol. 4513. Optoelectronic Information Systems and Processing (11-15 September, 2000, Vladivostok, Russia). SPIE; 2001. P. 46–51. 10.1117/12.435899.
17. Izmailov IV, Poizner BN. Implementation options for a nonlinear optical device for covert information transmission. Atmospheric and Oceanic Optics. 2001;14(11):1074–1086 (in Russian).
18. Arshinov AI, Mudarisov RR, Poizner BN. Triple of Kerr media in a ring interferometer: the role of non-identity. Izvestiya VUZ. Applied Nonlinear Dynamics. 1995;3(1):20–27 (in Russian).
19. Akhmanov SA, Vorontsov MA, editors. New Physical Principles of Optical Information Processing: Collection of Articles. Moscow: Nauka; 1990. P. 13–33; 263–326 (in Russian).
20. Anishchenko VS, Vadivasova TE, Astakhov VV. Nonlinear Dynamics of Chaotic and Stochastic Systems. Fundamental Principles and Selected Problems. Saratov: Saratov University Publishing; 1999. 368 p. (in Russian).
21. Loskutov AY, Mikhailov AS. Foundations of Synergetics. 2nd edition. Berlin: Springer; 1996. 278 p. DOI: 10.1007/978-3-642-80196-9.
22. Malinetsky GG, Potapov AB. Modern Problems of Nonlinear Dynamics. Moscow: Editorial URSS; 2000. 336 p. (in Russian).
23. Moon FC. Chaotic and Fractal Dynamics. New York: John Wiley; 1992. 508 p. DOI: 10.1002/9783527617500.
24. Magazinnikov AL, Poizner BN. Regular and chaotic processes in the model of a ring optical system. Teaching Physics in Higher Education. 2000;(19):103–106 (in Russian).
25. FRACTAN 3.6. Fractal Analysis [Electronic resource]. Available from: http:/fractan.boom.ru/fractan/fractan.zip.
26. Schuster HG. Deterministic Chaos: An Introduction. Weinheim: Physik-Verlag; 1984. 220 p.
- 373 reads