ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Zaharova A. S., Vadivasova T. E., Anishchenko V. S. Influence of noise on chaotic self-sustained oscillations in the regime of spiral attractor. Izvestiya VUZ. Applied Nonlinear Dynamics, 2006, vol. 14, iss. 5, pp. 44-61. DOI: 10.18500/0869-6632-2006-14-5-44-61

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 140)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
537.8;531+531.19

Influence of noise on chaotic self-sustained oscillations in the regime of spiral attractor

Autors: 
Zaharova Anna Sergeevna, Technische Universitßt Berlin
Vadivasova Tatjana Evgenevna, Saratov State University
Anishchenko Vadim Semenovich, Saratov State University
Abstract: 

In the present paper we analyze the influence of white and colored noise on chaotic self-sustained oscillations in the regime of spiral attractor. We study characteristics of instantaneous phase and spectra of noisy chaotic oscillations. The phenomenon of chaos synchronization by external narrow-band noise has been estimated. Synchronization phenomena under the influence of narrow-band noise signals with equal spectra and different probability densities are compared.

Key words: 
Reference: 
  1. Ventzel AD, Freidlin MI. Fluctuations in dynamic systems under the influence of small random disturbances. Moscow: Nauka; 1979. 424 p. (In Russian).
  2. Gardiner KV. Stochastic methods in the natural sciences. Moscow: Mir; 1986. 526 p. (In Russian).
  3. Horsthemke W, Lefever R. Noise-induced Transitions. Berlin: Springer, 1984.
  4. Anishchenko VS, Astakhov VV, Vadivasova ТЕ, Neiman AB, Strelkova GI, Schimansky-Geier L. Nonlinear Dynamics Of Chaotic And Stochastic System. Moscow - Izhevsk: ICR, 2003. 544 p. (In Russian).
  5. Graham R. Macroscopic potentials, bifurcations and noise in dissipative systems. Noise in Nonlinear Dynamical Systems. Vol.1: Theory of continuous Fokker – Planck systems. Ed. by. F. Moss and P.V.E. McClintock. Cambridge: Cambridge University Press; 1989.
  6. Anishchenko VS. Complex fluctuations in simple systems. Moscow: Nauka; 1990. 312 p. (In Russian).
  7. Kravtsov YA, Bilchinskaya SG, Butkovskii OY. et al. Prebifurcational noise rise in nonlinear systems. J. Exp. Theor. Phys. 2001;93(6):1323–1329. DOI: 10.1134/1.1435756.
  8. Kravtsov YuA, Surovyatkina ED. Nonlinear saturation of prebifurcation noise amplification. Phys. Lett. A. 2003;319(3-4):348–351. DOI: 10.1016/j.physleta.2003.10.034.
  9. Anishchenko VS, Okrokvertskhov GA, Vadivasova TE. Mixing and spectral-correlation properties of chaotic and stochastic systems: numerical and physical experiments. New Journal of Physics. 2005;7(1):76–106. DOI: 10.1088/1367-2630/7/1/076.
  10. Kifer YuI. On small random perturbations of some smooth dynamical systems. Math. USSR-Izv. 1974;8(5):1083–1107. DOI: 10.1070/IM1974v008n05ABEH002139.
  11. Sinai YG. Stochasticity of dynamic systems. Nonlinear waves. Ed. Gapanov-Grehov AV. Moscow: Nauka; 1979. 361 p. (In Russian).
  12. Anishchenko VS, Vadivasova TE, Okrokvertskhov GA, Strelkova GI. Statistical properties of dynamical chaos. Phys. Usp. 2005;48(2):151–166. DOI: 10.3367/UFNr.0175.200502c.0163.
  13. Bunimovich LA, Sinai YG. Stochasticity of the attractor in the Lorentz model. Nonlinear waves. Ed. AV. Gaponova-Grekhova. Moscow: Nauka; 1979. P. 212. (In Russian).
  14. Grebogi C, Hammel SM, Yorke JA, Sauer T. Shadowing of physical trajectories in chaotic dynamics: Containment and refinement. Phys Rev Lett. 1990;65(13):1527–1530. DOI: 10.1103/PhysRevLett.65.1527.
  15. Sommerer JC, Ott E, Grebogi C. Scaling law for characteristic times of noise-induced crises. Phys Rev A. 1991;43(4):1754–1769. DOI: 10.1103/physreva.43.1754.
  16. Schroer ChG, Ott E, Yorke JA. Effects of noise on nonhyperbolic chaotic attractors. Phys. Rev. Lett. 1998;81(7):1397.
  17. Anishchenko VS, Vadivasova TE, Kopeikin AS, Kurths J, Strelkova GI. Effect of noise on the relaxation to an invariant probability measure of nonhyperbolic chaotic attractors. Phys Rev Lett. 2001;87(5):054101. DOI: 10.1103/PhysRevLett.87.054101.
  18. Arneodo A, Collet P, Tresser C. Possible new strange attractors with spiral structure. Commun. Math. Phys. 1981;79(4):573–579. DOI: 10.1007/BF01209312.
  19. Farmer JD. Spectral broadening of period–dubling bifurcation sequences. Phys. Rev. Lett. 1981;47(5):179–182.
  20. Pikovsky AS, Rosenblum MG, Kurths J. Synchronization: a universal concept in nonlinear sciences. Cambridge: University Press; 2001. 433 p.
  21. Anishchenko VS, Vadivasova TE, Kopeikin AS, Kurths J, Strelkova GI. Peculiarities of the relaxation to an invariant probability measure of nonhyperbolic chaotic attractors in the presence of noise. Phys. Rev. E. 2002;65(2):036206.
  22. Anishchenko VS, Vadivasova TE, Kurtz J, Okrokvertskhov GA, Strelkova GI. Correlation analysis of dynamical chaos. Physica A. 2003;325(1):199–212. DOI: 10.1016/S0378-4371(03)00199-7.
  23. Anishchenko VS, Vadivasova TE, Kurtz J, Okrokvertskhov GA, Strelkova GI. Autocorrelation function and spectral linewidth of spiral chaos in a physical experiment. Phys. Rev. E. 2004;69(32):036215. DOI: 10.1103/PhysRevE.69.036215.
  24. Anishchenko VS, Vadivasova TE, Okrokvertskhov GA, Strelkova GI. Correlation analysis of deterministic and noisy chaos. Journal of Communications Technology and Electronics. 2003;48(7):750–760.
  25. Anishchenko VS, Vadivasova TE, Okrokvertskhov GA, Strelkova GI, Zakharova AS. Statistical properties of the instantaneous phase of noisy periodic and chaotic self-sustained oscillations. Journal of Communications Technology and Electronics. 2006;51(5):545–556. DOI: 10.1134/S1064226906050081.
  26. Lorenzo MN, Perez-Munuzuri V. Influence of low intensity noise on assemblies of diffusively coupled chaotic cells. Chaos. 2001;11(2):371–376. DOI: 10.1063/1.1372513.
  27. Malakhov AN. Fluctuations in self-oscillating systems. Moscow: Nauka; 1968. 660 p. (In Russian).
  28. Landa PS. Self-oscillations in systems with a finite number of degrees of freedom. Moscow: Nauka; 1980. 360 p. (In Russian).
  29. Rossler OE. An equation for continuous chaos. Phys. Lett.A. 1976;57(5):397–398. DOI: 10.1016/0375-9601(76)90101-8.
  30. Anishchenko VS, Vadivasova TE, Strelkova GI. Instantaneous phase method in stadying chaotic and stochastic oscillations and its limitations. Fluct. Noise Lett. 2004;4(1):L219—L229. DOI: 10.1142/S0219477504001835.
  31. Vadivasova TE, Anishchenko VS. Relationship between frequency and phase characteristics of chaos: Two criteria of synchronization. Journal of Communications Technology and Electronics. 2004;49(1):69–75.
  32. Malakhov AN. Fluctuations in self-oscillating systems. Moscow: Nauka; 1968. 660 p. (In Russian).
  33. Stratonovich RL. Selected Questions of the Theory of Fluctuations in Radio Engineering. Moscow: Sovetskoe Radio; 1961. 560 p. (in Russian).
  34. Rytov SM. Introduction to statistical radiophysics. Part I: Random processes. Moscow: Nauka; 1976. 494 p. (In Russian).
  35. Osipov GV, Hu B, Zhou C, Ivanchenko MV, Kurths J. Three types of transitions to phase synchronization in coupled chaotic oscillators. Phys Rev Lett. 2003;91(2):024101. DOI: 10.1103/PhysRevLett.91.024101.
Received: 
04.04.2006
Accepted: 
11.05.2006
Published: 
30.11.2006
Short text (in English):
(downloads: 49)