ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Seleznev M. E., Nikulin Y. V., Khivintsev Y. V., Vysotskii S. L., Kozhevnikov A. V., Sakharov V. K., Dudko G. M., Filimonov Y. A. Influence of parametric instability on spin pumping by dipole-exchange magnetostatic surface waves in YIG–Pt structures. Izvestiya VUZ. Applied Nonlinear Dynamics, 2023, vol. 31, iss. 2, pp. 225-242. DOI: 10.18500/0869-6632-003032, EDN: JYXDDE

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
Full text PDF(En):
Article type: 

Influence of parametric instability on spin pumping by dipole-exchange magnetostatic surface waves in YIG–Pt structures

Seleznev M. E., Saratov State University
Nikulin Y. V., Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Khivintsev Y. V., Saratov State University
Vysotskii S. L., Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Kozhevnikov Aleksandr Vladimirovich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Sakharov Valentin Konstantinovich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Dudko Galina Mihajlovna, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Filimonov Y. A., Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences

The purpose of this work is to study the influence of four-magnon (4M) parametric instability on spin pumping by dipole-exchange magnetostatic surface waves (MSSW) with the help of the inverse spin Hall effect (ISHE) in structures based on yttrium-iron garnet (YIG) and platinum (Pt).

Methods. The experiments were carried out using the delay line structures based on YIG(900 nm)/Pt(9 nm) where electromotive force (EMF) induced by ISHE demonstrates a growth at the frequencies of the resonant interaction between MSSW and volume exchange modes. The frequency dependencies of the amplitude and phase for the delay line structure and EMF (U(f)) from the platinum layer were studied as a function of the MSSW power.

Results. It was shown that the resonant EMF growth at the frequencies of dipole-exchange resonances is caused by the presence of Van Hove singularities in the density of states for spin waves at such frequencies that leads to an increase in the efficiency of electron-magnon scattering at the YIG–Pt interface. A growth in MSSW power beyond the threshold of 4M instability development results in a “smoothing” of resonant particularities in the EMF frequency dependence U(f) that can be explained by decreasing efficiency of spin pumping due to destruction of dipole-exchange resonances and related singularities in the density of states of spin waves.

Conclusion. Obtained results may be of interest for the development of highly sensitive spin current detectors, as well as for the implementation of spintronic devices. 

The work was supported by RSF grant No. 22-19-00500
  1. Kajiwara Y, Harii K, Takahashi S, Ohe J, Uchida K, Mizuguchi M, Umezawa H, Kawai H, Ando K, Takanashi K, Maekawa S, Saitoh E. Transmission of electrical signals by spin-wave interconversion in a magnetic insulator. Nature. 2010;464(7286):262–266. DOI: 10.1038/nature08876.
  2. Sinova J, Valenzuela SO, Wunderlich J, Back CH, Jungwirth T. Spin Hall effects. Rev. Mod. Phys. 2015;87(4):1213–1260. DOI: 10.1103/RevModPhys.87.1213.
  3. Althammer M. Pure spin currents in magnetically ordered insulator/normal metal heterostructures. J. Phys. D: Appl. Phys. 2018;51(31):313001. DOI: 10.1088/1361-6463/aaca89.
  4. Brataas A, van Wees B, Klein O, de Loubens G, Viret M. Spin insulatronics. Physics Reports. 2020;885:1–27. DOI: 10.1016/j.physrep.2020.08.006.
  5. Sandweg CW, Kajiwara Y, Ando K, Saitoh E, Hillebrands B. Enhancement of the spin pumping efficiency by spin wave mode selection. Appl. Phys. Lett. 2010;97(25):252504. DOI: 10.1063/ 1.3528207.
  6. Chumak AV, Serga AA, Jungfleisch MB, Neb R, Bozhko DA, Tiberkevich VS, Hillebrands B. Direct detection of magnon spin transport by the inverse spin Hall effect. Appl. Phys. Lett. 2012;100(8):082405. DOI: 10.1063/1.3689787.
  7. Balinsky M, Ranjbar M, Haidar M, Durrenfeld P, Khartsev S, Slavin A, Akerman J, Dumas RK. Spin pumping and the inverse spin-hall effect via magnetostatic surface spin-wave modes in Yttrium-Iron garnet/platinum bilayers. IEEE Magn. Lett. 2015;6:3000604. DOI: 10.1109/LMAG. 2015.2471276.
  8. Iguchi R, Ando K, Qiu Z, An T, Saitoh E, Sato T. Spin pumping by nonreciprocal spin waves under local excitation. Appl. Phys. Lett. 2013;102(2):022406. DOI: 10.1063/1.4775685.
  9. d’Allivy Kelly O, Anane A, Bernard R, Ben Youssef J, Hahn C, Molpeceres AH, Carret´ ero C, Jacquet E, Deranlot C, Bortolotti P, Lebourgeois R, Mage JC, de Loubens G, Klein O, Cros V, Fert A. Inverse spin Hall effect in nanometer-thick yttrium iron garnet/Pt system. Appl. Phys. Lett. 2013;103(8):082408. DOI: 10.1063/1.4819157.
  10. Uchida K, Xiao J, Adachi H, Ohe J, Takahashi S, Ieda J, Ota T, Kajiwara Y, Umezawa H, Kawai H, Bauer GEW, Maekawa S, Saitoh E. Spin Seebeck insulator. Nature Materials. 2010;9(11):894–897. DOI: 10.1038/nmat2856.
  11. Agrawal M, Vasyuchka VI, Serga AA, Kirihara A, Pirro P, Langner T, Jungfleisch MB, Chumak AV, Papaioannou ET, Hillebrands B. Role of bulk-magnon transport in the temporal evolution of the longitudinal spin-Seebeck effect. Phys. Rev. B. 2014;89(22):224414. DOI: 10.1103/PhysRevB.89. 224414.
  12. Sandweg CW, Kajiwara Y, Chumak AV, Serga AA, Vasyuchka VI, Jungfleisch MB, Saitoh E, Hillebrands B. Spin pumping by parametrically excited exchange magnons. Phys. Rev. Lett. 2011;106(21):216601. DOI: 10.1103/PhysRevLett.106.216601.
  13. Kurebayashi Н, Dzyapko O, Demidov VE, Fang D, Ferguson AJ Demokritov SO. Controlled enhancement of spin-current emission by three-magnon splitting. Nature Materials. 2011;10(9):660– 664. DOI: 10.1038/nmat3053.
  14. Kurebayashi H, Dzyapko O, Demidov VE, Fang D, Ferguson AJ, Demokritov SO. Spin pumping by parametrically excited short-wavelength spin waves. Appl. Phys. Lett. 2011;99(16):162502. DOI: 10.1063/1.3652911.
  15. Manuilov SA, Du CH, Adur R, Wang HL, Bhallamudi VP, Yang FY, Hammel PC. Spin pumping from spinwaves in thin film YIG. Appl. Phys. Lett. 2015;107(4):042405. DOI: 10.1063/1.4927451.
  16. Tveten EG, Brataas A, Tserkovnyak Y. Electron-magnon scattering in magnetic heterostructures far out of equilibrium. Phys. Rev. B. 2015;92(18):180412. DOI: 10.1103/PhysRevB.92.180412.
  17. Saitoh E, Ueda M, Miyajima H, Tatara G. Conversion of spin current into charge current at room temperature: Inverse spin-Hall effect. Appl. Phys. Lett. 2006;88(18):182509. DOI: 10.1063/ 1.2199473.
  18. Maekawa S, Adachi H, Uchida K, Ieda J, Saitoh E. Spin current: Experimental and theoretical aspects. J. Phys. Soc. Jpn. 2013;82(10):102002. DOI: 10.7566/JPSJ.82.102002.
  19. Van Hove L. The occurrence of singularities in the elastic frequency distribution of a crystal. Phys. Rev. 1953;89(6):1189–1193. DOI: 10.1103/PhysRev.89.1189.
  20. Damon RW, Eshbach JR. Magnetostatic modes of a ferromagnet slab. Journal of Physics and Chemistry of Solids. 1961;19(3–4):308–320. DOI: 10.1016/0022-3697(61)90041-5.
  21. Nikulin YV, Seleznev МЕ, Khivintsev YV, Sakharov VК, Pavlov ES, Vysotskii SL, Kozhevnikov AV, Filimonov YA. EMF generation by propagating magnetostatic surface waves in integrated thin-film Pt/YIG structure. Semiconductors. 2020;54(12):1721–1724. DOI: 10.1134/S106378262012026X.
  22. Seleznev ME, Nikulin YV, Khivintsev YV, Vysotskii SL, Kozhevnikov AV, Sakharov VK, Dudko GM, Pavlov ES, Filimonov YA. Influence of three-magnon decays on electromotive force generation by magnetostatic surface waves in integral YIG – Pt structures. Izvestiya VUZ. Applied Nonlinear Dynamics. 2022;30(5):617–643. DOI: 10.18500/0869-6632-003008.
  23. De Wames RE, Wolfram T. Dipole-exchange spin waves in ferromagnetic films. J. Appl. Phys. 1970;41(3):987–993. DOI: 10.1063/1.1659049.
  24. Seleznev ME, Nikulin UV, Sakharov VK, Khivintsev UV, Kozhevnikov AV, Vysotskii SL, Filimonov UA. Influence of the resonant interaction of surface magnetostatic waves with exchange modes on the EMF generation in YIG/Pt structures. Tech. Phys. 2021;91(10):1504–1508 (in Russian). DOI: 10.21883/JTF.2021.10.51363.136-21.
  25. Nikulin YV, Kozhevnikov AV, Vysotskii SL, Seleznev ME, Khivintsev YV, Filimonov YA. Investigation of the interference of magnetostatic surface waves using the inverse spin Hall effect. Physics of the Solid State. 2022;64(9):1284–1288. DOI: 10.21883/PSS.2022.09.54167.21HH.
  26. Gurevich AG, Melkov GA. Magnetization Oscillations and Waves. Boca Raton: CRC Press; 1996. 464 p.
  27. Vashkovskii AV, Stalmakhov VS, Sharaevskii YP. Magnetostatic Waves in High-Frequency Electronics. Saratov: Saratov University Publishing; 1993. 312 p. (in Russian).
  28. Lvov VS. Nonlinear Spin Waves. Moscow: Nauka; 1987. 272 p. (in Russian).
  29. Castel V, Vlietstra N, Ben Youssef J, Van Wees BJ. Platinum thickness dependence of the inverse spin-Hall voltage from spin pumping in a hybrid yttrium iron garnet/platinum system. Appl. Phys. Lett. 2012;101(13):132414. DOI: 10.1063/1.4754837.
  30. Castel V, Vlietstra N, Van Wees BJ, Ben Youssef J. Frequency and power dependence of spincurrent emission by spin pumping in a thin-film YIG/Pt system. Phys. Rev. B. 2012;86(13):134419. DOI: 10.1103/PhysRevB.86.134419.
  31. Jungfleisch MB, Chumak AV, Kehlberger A, Lauer V, Kim DH, Onbasli MC, Ross CA, Klaui M, Hillebrands B. Thickness and power dependence of the spin-pumping effect in Y3Fe5O12/Pt heterostructures measured by the inverse spin Hall effect. Phys. Rev. B. 2015;91(13):134407. DOI: 10.1103/PhysRevB.91.134407.
  32. Watanabe S, Hirobe D, Shiomi Y, Iguchi R, Daimon S, Kameda M, Takahashi S, Saitoh E. Generation of megahertz-band spin currents using nonlinear spin pumping. Scientific Reports. 2017;7(1):4576. DOI: 10.1038/s41598-017-04901-4.
  33. Ando K, Saitoh E. Spin pumping driven by bistable exchange spin waves. Phys. Rev. Lett. 2012;109(2):026602. DOI: 10.1103/PhysRevLett.109.026602.
  34. Khivintsev YV, Filimonov YA, Nikitov SA. Spin wave excitation in yttrium iron garnet films with micron-sized antennas. Appl. Phys. Lett. 2015;106(5):052407. DOI: 10.1063/1.4907626.
  35. Nur Kholid F, Hamara D, Terschanski M, Mertens F, Bossini D, Cinchetti M, McKenzie-Sell L, Patchett J, Petit D, Cowburn R, Robinson J, Barker J, Ciccarelli C. Temperature dependence of the picosecond spin Seebeck effect. Appl. Phys. Lett. 2021;119(3):032401. DOI: 10.1063/5.0050205.
  36. Mednikov AM. Nonlinear effects under the propagation of surface spin waves in YIG films. Soviet Physics, Solid State. 1981;23(1):242–245 (in Russian).
  37. Temiryazev AG. The mechanism of transformation of magnetostatic surface waves in the conditions of three-magnon decay. Soviet Physics, Solid State. 1987;29(2):313–319 (in Russian).
  38. Polzikova NI, Raevskii AO, Temiryazev AG. Influence of exchange interaction on boundary of three-magnon decay of Damon-Eshbach wave in YIG thin films. Soviet Physics, Solid State. 1984;26(11):3506–3508 (in Russian).
  39. Kazakov GT, Kozhevnikov AV, Filimonov YA. Four-magnon decay of magnetostatic surface waves in yttrium iron garnet films. Physics of the Solid State. 1997;39(2):288–295. DOI: 10.1134/ 1.1129801.
  40. Kazakov GT, Kozhevnikov AV, Filimonov YA. The effect of parametrically excited spin waves on the dispersion and damping of magnetostatic surface waves in ferrite films. J. Exp. Theor. Phys. 1999;88(1):174–181. DOI: 10.1134/1.558780.
  41. Gulyaev YV, Bugaev AS, Zil’berman PE, Ignat’ev IA, Konovalov AG, Lugovskoi AV, Mednikov AM, Nam BP, Nikolaev EI. Giant oscillations in the transmission of quasi-surface spin waves through a thin yttrium-iron garnet (YIG) film. JETP Lett. 1979;30(9):565–568.
  42. Gulyaev YV, Zil’berman PE, Lugovskoi AV. Influence of nonuniform exchange and dissipation on propagation of surface Damon-Eshback waves in ferromagnetic plate. Soviet Physics, Solid State. 1981;23(4):1136–1142 (in Russian).
  43. Donahue MJ, Porter DG. OOMMF User’s Guide. Interagency Report NISTIR 6376. Gaithersburg, MD: National Institute of Standards and Technology; 1999. 94 p. DOI: 10.6028/NIST.IR.6376.
  44. Dvornik M, Au Y, Kruglyak VV. Micromagnetic Simulations in Magnonics. In: Demokritov S, Slavin A, editors. Magnonics. Vol. 125 of Topics in Applied Physics. Berlin: Springer; 2013. P. 101–115. DOI: 10.1007/978-3-642-30247-3_8.
  45. Sakharov VK, Khivintsev YV, Dudko GM, Dzhumaliev AS, Vysotskii SL, Stognij AI, Filimonov YA. Particularities of spin wave propagation in magnonic crystals with nonuniform magnetization distribution across the thickness. Physics of the Solid State. 2022;64(9):1247–1254. DOI: 10.21883/ PSS.2022.09.54160.11HH.
  46. Bugaev AS, Galkin OL, Gulyaev YV, Zilberman PE. Electrons’ drag by magnetostatic wave in a layered ferrite-metal structure. Sov. Tech. Phys. Lett. 1982;8(8):485–488 (in Russian).
  47. Veselov AG, Vysotsky SL, Kazakov GT, Sukharev AG, Filimonov YA. Magnetostatic surface waves in metallized YIG films. J. Commun. Technol. Electron. 1994;39(12):2067–2074 (in Russian).
  48. Filimonov YA, Khivintsev YV. Interaction of magnetostatic surface and elastic volume waves in a metallized structure ferromagnet-dielectric. J. Commun. Technol. Electron. 2002;47(8):1002–1007 (in Russian).
  49. Sakharov VK, Khivintsev YV, Vysotskii SL, Stognij AI, Dudko GM, Filimonov YA. Influence of input signal power on magnetostatic surface waves propagation in yttrium-iron garnet films on silicon substrates. Izvestiya VUZ. Applied Nonlinear Dynamics. 2017;25(1):35–51. DOI: 10.18500/0869-6632-2017-25-1-35-51.
Available online: