ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Rabinovich M. I., Varona P. ., Afraimovich V. S. Information dynamics in neural systems: computing with separatrices. Izvestiya VUZ. Applied Nonlinear Dynamics, 2003, vol. 11, iss. 1, pp. 86-97. DOI: 10.18500/0869-6632-2003-11-1-86-97

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 0)
Language: 
English
Article type: 
Article
UDC: 
517.9:612; 537

Information dynamics in neural systems: computing with separatrices

Autors: 
Rabinovich Mihail Izrailevich, University of California, San Diego
Varona Pablo , Universidad Autonoma de Madrid
Afraimovich Valentin S., Universidad Autónoma de San Luis Potosí
Abstract: 

Information processing in neural networks by computation with attractors (steady states, limit cycles, strange attractors) has been extensively discussed in application to many neural systems: central pattern generators, sensory systems (e.g. visual, olfactory), hippocampus, etc. Computation with attractors in a traditional way faces а fundamental contradiction between robustness and sensitivity. In this paper we discuss а new direction in information neurodynamics based on experiments performed in the locust olfactory system, the orientation sensory system of the marine mollusk Clione апа the hippocampal place cell networks. This new concept uses the transformation of the incoming spatial or identity information into spatio-temporal output based on the intrinsic switching dynamics of neural networks with nonsymmetric inhibitory connections. This is called the Winner-Less Competition Principle (WLC). The key feature of а network that computes with separatrices is the robustness against noise and the simultancous sensitivity of the sequence of switching to the incoming information. We present rigorous results about the stability of the sequential switching in the framework оf the Lottka-Volterra model. Because оf their fast reaction, the discussed neural networks are able 10 change their intrinsic dynamics to respond to new incoming information and solve many different functional tasks. Computation with separatrices can also be an optimal principle for the design of new paradigms of artificial neural networks.

Key words: 
Acknowledgments: 
Support for this work came from МН grant 2R01 NS38022-05A1, Department of Energy grant DE-FG03-96ER14592 апа NSF/EIA-0130708. V.A. was supported by Conacyt grant 485100-3-36445-E and by UC Mexus-Conacyt grant.
Reference: 
  1. Hopfield JJ. Neural networks and systems with emergent selective computational abilities. Proc. Natl. Acad. Sci. USA. 1982;79(8):2554–2558. DOI: 10.1073/pnas.79.8.2554.
  2. Li Z, Hopfield JJ. Modeling оf the olfactory bulb and its neural oscillatory processings. Biological Cybernetics. 1989;61(5):379–392. DOI: 10.1007/bf00200803.
  3. Skarda CA, Freeman WJ. How brains make chaos in order to make sense of the world. Behav. Brain Sci. 1987;10(2):161–173. DOI: 10.1017/S0140525X00047336.
  4. Rabinovich МI, Volkovskii А, Lecanda Р, Huerta R, Abarbanel HDI, Laurent G. Dynamical encoding by networks of competing neuron groups: Winnerless competition. Physical Review Letters. 2001;87(6):068102. DOI: 10.1103/PhysRevLett.87.068102.
  5. Varona Р, Rabinovich MI, Selverston AL, Arshavsky YI. Winnerless competition between sensory neurons generates chaos: а possible mechanism for molluscan hunting behavior. Chaos. 2002;12(3):672–677. DOI: 10.1063/1.1498155.
  6. Cohen MA, Grossberg S. Absolute stability оf global pattern formation and parallel memory storage by competitive neural networks. IЕЕЕ Transactions оn Systems, Man and Cybernetics. 1983;13(5):815–826. DOI: 10.1109/TSMC.1983.6313075.
  7. Abeles M, Bergman H, Gat L, Meilijson I, Seidemann E, Tishby N, Vaadia Е. Cortical activity flips among quasi-stationary states. Proc. Natl. Acad. Sci. USA. 1995;92(19):8616–8620. DOI: 10.1073/pnas.92.19.8616.
  8. Afraimovich VS, Hsu SB, Lin HE. Chaotic behavior оf three competing species оf May-Leonard model under small periodic perturbations. International Journal of Bifurcation and Chaos. 2001;11(2):435–447. DOI: 10.1142/S021812740100216X.
  9. Chi CW, Hsu SB, Wu LI. On the asymmetric May-Leonard model оf three competing species. SIAM J. Appl. Math. 1998;58(1):211–226. DOI: 10.1137/S0036139994272060.
  10. Kuznetsov YA. Elements оf Applied Bifurcation Theory. Vol. 112. New York: Springer; 1998. 594 p.
  11. Afraimovich VS, Rabinovich МI, Varona P. Computation with Separatrices: Robustness and sensitivity. AIP Conf. Proc. 2003;676(1):239–250. DOI: 10.1063/1.1612219.
  12. Bazhenov M, Stopfer M, Rabinovich МI, Huerta R, Abarbanel HDI, Sejnowski TJ, Laurent G. Model of transient oscillatory synchronization in the locust antennal lobe. Neuron. 2001;30(2):553–567. DOI: 10.1016/S0896-6273(01)00284-7.
  13. Arshavsky YI, Deliagina TG, Gamkrelidze GN, Orlovsky GN, Panchin YV, Popova LB. Pharmacologically-induced elements оf feeding behavior in the pteropod mollusc Clione Limacina. II. Effect оf physostigmine. J. Neurophysiol. 1993;69(2):522–532. DOI: 10.1152/jn.1993.69.2.522.
  14. Levi R, Varona Р, Rabinovich MI, Selverston АI, Arshavsky YI. Control of hunting behavior in the mollusk Clione: winnerless competition between the statocyst receptor neurons. SFN Abstracts. 2002;28:60.1.
  15. Seliger F, Tsimring L, Rabinovich MI. Dynamical model of sequential spatial memory: winnerless competition оf patterns. 2003;67(1): 011905. DOI: 10.1103/PhysRevE.67.011905.
Received: 
15.11.2002
Accepted: 
12.05.2003
Available online: 
10.11.2023
Published: 
30.05.2003