ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Dmitriev A. S., Ryzhov A. I., Sierra-Teran C. M. Introduction to the statistical theory of differential communication based on chaotic signals. Izvestiya VUZ. Applied Nonlinear Dynamics, 2023, vol. 31, iss. 4, pp. 421-438. DOI: 10.18500/0869-6632-003048, EDN: VASLIL

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
Full text PDF(En):
Language: 
Russian
Article type: 
Article
UDC: 
530.182
EDN: 

Introduction to the statistical theory of differential communication based on chaotic signals

Autors: 
Dmitriev Aleksandr Sergeevich, Kotel'nikov Institute of Radioengineering and Electronics of Russian Academy of Sciences
Ryzhov Anton Igorevich, Kotel'nikov Institute of Radioengineering and Electronics of Russian Academy of Sciences
Sierra-Teran C.  M., Moscow Institute of Physics and Technology
Abstract: 

The purpose of this paper is to analyse the statistical characteristics of a Direct Chaotic Differentially Coherent communication scheme based on chaotic radio pulses in a communication channel with additive white Gaussian noise, where the chaotic signal is given by different instantaneous distributions.

Methods. To achieve this goal, numerical modelling of the noise immunity of Direct Chaotic Differentially Coherent communication is conducted and compared with the results of analytical research.

Results. The regularities associated with the use of chaotic signals with various statistical distributions of instantaneous values were studied. The minimum values of energy per bit to white Gaussian noise power spectral density ratio were obtained, providing the required error probabilities.

Conclusion. It is shown that the proposed system works efficiently at high values of processing gain, and as the processing gain increases, the dependence of noise immunity on the specific statistical distribution of the chaotic signal is levelled out.

Acknowledgments: 
The research was funded by the Russian Science Foundation (project No. 23-29-00070)
Reference: 
  1. Kocarev L, Halle KS, Eckert K, Chua LO, Parlitz U. Experimental demonstration of secure communications via chaotic synchronization. Int. J. Bifurc. Chaos. 1992;2(3):709–713. DOI: 10.1142/S0218127492000823.
  2. Parlitz U, Chua LO, Kocarev L, Halle KS, Shang A. Transmission of digital signals by chaotic synchronization. Int. J. Bifurc. Chaos. 1992;2(4):973–977. DOI: 10.1142/S0218127492000562.
  3. Cuomo KM, Oppenheim AV. Circuit implementation of synchronized chaos with applications to communications. Phys. Rev. Lett. 1993;71(1):65–68. DOI: 10.1103/PhysRevLett.71.65.
  4. Belskii YL, Dmitriev AS. Information transmission using deterministic chaos. J. Commun. Technol. Electron. 1993;38(7):1310–1315 (in Russian).
  5. Volkovskii AR, Rul’kov NF. Synchronous chaotic response of a nonlinear oscillator system as a principle for the detection of the information component of chaos. Tech. Phys. Lett. 1993;19(2): 97–99.
  6. Dedieu H, Kennedy MP, Hasler M. Chaos shift keying: modulation and demodulation of a chaotic carrier using self-synchronizing Chua’s circuits. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing. 1993;40(10):634–642. DOI: 10.1109/82.246164.
  7. Halle KS, Wu CW, Itoh M, Chua LO. Spread spectrum communications through modulation of chaos. Int. J. Bifurc. Chaos. 1993;3(2):469–477. DOI: 10.1142/S0218127493000374.
  8. Dmitriev AS, Panas A, Starkov SO. Transmission of complex analog signals by means of dynamical chaos. In: Proceedings of the 3rd International Specialist Workshop on Nonlinear Dynamics of Electronic Systems. Dublin, Ireland, 28-29 July 1995. Dublin: NDES; 1995. P. 241–244.
  9. Dmitriev AS, Panas AI, Starkov SO. Experiments on speech and music signals transmission using chaos. Int. J. Bifurc. Chaos. 1995;5(4):1249–1254. DOI: 10.1142/S0218127495000910.
  10. Dmitriev AS, Panas AI. Dynamic Chaos: Novel Type of Information Carrier for Communication Systems. Moscow: Fizmatlit; 2002. 252 p. (in Russian).
  11. Lau FCM, Tse CK. Chaos-Based Digital Communication Systems: Operating Principles, Analysis Methods, and Performance Evaluation. Berlin, Heidelberg: Springer-Verlag; 2003. 228 p. DOI: 10.1007/978-3-662-05183-2.
  12. Kaddoum G. Wireless chaos-based communication systems: A comprehensive survey. IEEE Access. 2016;4:2621–2648. DOI: 10.1109/ACCESS.2016.2572730.
  13. Dmitriev AS, Panas AI, Starkov SO, Andreev JV, Kuz’min LV, Kjarginskij BE, Maksimov NA. Method for data transmission by means of chaotic signals. Patent No. 2185032 С2 Russian Federation, IPC H04K 1/00, H04B 1/02, H04J 13/00: appl. 06.10.2000: publ. 10.07.2002. 20 p. (in Russian).
  14. Dmitriev AS, Kyarginskii BE, Panas AI, Starkov SO. Plain scheme of chaotic-carrier data communications at microwave frequencies. J. Commun. Technol. Electron. 2001;46:207–214.
  15. Dmitriev AS, Kyarginsky BY, Panas AI, Starkov SO. Experiments on direct chaotic communications in microwave band. Int. J. Bifurc. Chaos. 2003;13(6):1495–1507. DOI: 10.1142/S021812740 3007345.
  16. VanWiggeren GD, Roy R. Optical communication with chaotic waveforms. Phys. Rev. Lett. 1998;81(16):3547–3550. DOI: 10.1103/PhysRevLett.81.3547.
  17. Ke J, Yi L, Hou T, Hu W. Key technologies in chaotic optical communications. Front. Optoelectron. 2016;9(3):508–517. DOI: 10.1007/s12200-016-0570-y.
  18. Kingni ST, Ainamon C, Tamba VK, Chabi Orou JB. Directly modulated semiconductor ring lasers: Chaos synchronization and applications to cryptography communications. Chaos. Theory and Applications. 2020;2(1):31–39.
  19. Bai C, Ren HP, Grebogi C, Baptista MS. Chaos-based underwater communication with arbitrary transducers and bandwidth. Appl. Sci. 2018;8(2):162–172. DOI: 10.3390/app8020162.
  20. Chen M, Xu W, Wang D, Wang L. Multi-carrier chaotic communication scheme for underwater acoustic communications. IET Communications. 2019;13(14):2097–2105. DOI: 10.1049/ietcom.2018.5524.
  21. Dmitriev AS, Efremova EV, Gerasimov MY, Itskov VV. Radio lighting based on ultrawideband dynamic chaos generators. J. Commun. Technol. Electron. 2016;61(11):1259–1268. DOI: 10.1134/ S1064226916110024.
  22. Dmitriev AS, Efremova EV, Ryzhov AI, Petrosyan MM, Itskov VV. Artificial radio lighting with sources of microwave dynamic chaos. Chaos. 2021;31(6):063135. DOI: 10.1063/5.0053504.
  23. Petrovich NT, Razmahnin MK. Communications With Noise Like Signals. Moscow: Sovetskoe Radio; 1969. 233 p. (in Russian).
  24. Varakin LE. Communication Systems With Noise Like Signals. Moscow: Radio i Svyaz; 1985. 384 p. (in Russian).
  25. Dixon RC. Spread Spectrum Systems with Commercial Applications. 3rd Edition. New York: Wiley; 1994. 592 p.
  26. Almuhaya MAM, Jabbar WA, Sulaiman N, Abdulmalek S. A survey on LoRaWAN technology: Recent trends, opportunities, simulation tools and future directions. Electronics. 2022;11(1): 164–195. DOI: 10.3390/electronics11010164.
  27. Dmitriev AS, Mokhseni TI, Sierra-Teran KM. Differentially coherent information transmission based on chaotic radio pulses. J. Commun. Technol. Electron. 2018;63(10):1183–1190. DOI: 10.1134/S1064226918100078.
  28. Dmitriev AS, Mokhseni TI, Sierra-Teran CM. Ultra- and hyper-wideband differentially coherent information transmission based on chaotic radio pulses. Izvestiya VUZ. Applied Nonlinear Dynamics. 2018;26(4):59–74. DOI: 10.18500/0869-6632-2018-26-4-59-74.
  29. Dmitriev AS, Mokhseni TI., Sierra-Terant CM. Differentially coherent communication scheme based on chaotic radio pulses. Nonlinear Phenomena in Complex Systems. 2018;21(3):237–246.
  30. Dmitriev AS, Mokhseni TI, Sierra-Teran CM. Simulation of differentially coherent information transmission system based on chaotic radio pulses in ADS environment. Izvestiya VUZ. Applied Nonlinear Dynamics. 2019;27(5):72–86 (in Russian). DOI: 10.18500/0869-6632-2019-27-5-72-86.
  31.  Kolumban G, Kennedy MP, Chua LO. The role of synchronization in digital communications using chaos. I. Fundamentals of digital communications. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications. 1997;44(10):927–936. DOI: 10.1109/81.633882.
  32. Kolumban G, Vizvari В, Schwarz W, Abel A. Differential chaos shift keying: A robust coding for chaos communication. In: Proceedings of the 4th International Specialist Workshop on Nonlinear Dynamics of Electronic Systems. Seville, Spain, 27-28 June 1996. Seville: NDES; 1996. P. 87–92.
  33. Sushchik M, Tsimring LS, Volkovskii AR. Performance analysis of correlation-based communication schemes utilizing chaos. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications. 2000;47(12):1684–1691. DOI: 10.1109/81.899920.
  34. Klyuev VF, Samarin VP, Klyuev AV. Nonlinear algorithms for measuring the noise signal power against the background of interferences. Radioelectronics and Communications Systems. 2013;56(6):304–311. DOI: 10.3103/S073527271306006X.
Received: 
10.02.2023
Accepted: 
24.04.2023
Available online: 
03.07.2023
Published: 
31.07.2023