ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Loginova M. V., Anishchenko V. S. Investigation of universal properties of external synchronization threshold in chaotic systems. Izvestiya VUZ. Applied Nonlinear Dynamics, 2003, vol. 11, iss. 2, pp. 87-95. DOI: 10.18500/0869-6632-2003-11-2-87-95

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
Article type: 

Investigation of universal properties of external synchronization threshold in chaotic systems

Loginova Maria Vyacheslavovna, Saratov State University
Anishchenko Vadim Semenovich, Saratov State University

In this paper the dependence of amplitude threshold of synchronization on Kolmogorov entropy is considered. The influence of nonhyperbolicity оп this regularity is investigated. Synchronization of chaos takes place when chaotic regime changes to a regular one with external force parameters changing. In this case synchronization appears when the amplitude оf external force is rather big, that means the amplitude threshold takes place. The hypothesis about universality of the exponential dependence between amplitude threshold and Kolmogorov entropy is checking by investigation of Lorenz system in quasihyperbolic regime. The influence оf nonhyperbolicity оп the regularity got for hyperbolic systems is investigated. For this purpose we consider nonhyperbolic attractor in Lorenz system and funnel and spiral nonhyperbolic attractors in Roessler system.

Key words: 
  1. Kuznetsov YA, Landa PS, Olkhovoy AF, Perminov SM. Amplitude synchronization threshold as a measure of chaos in stochastic self-oscillating systems. Proc. Acad. Sci. USSR. 1985;281(2):1164–1169 (in Russian).
  2. Dykman G, Landa Р, Neimark Y. Synchronized оf chaotic oscillations by external force. Chaos, Solitons and Fractals. 1992;1(4):339–353. DOI: 10.1016/0960-0779(91)90025-5.
  3. Yamada Y, Fujisaka H. Stability Theory оf synchronized notions in couple oscillators. Progr. Theor. Phys. 1984;69:32–47. DOI: 10.1143/PTP.69.32.
  4. Afraimovich VS, Verichev NN, Rabinovich MI. Stochastic synchronization of oscillation in dissipative systems. Radiophys. Quantum Electron. 1986;29(9):795–803. DOI: 10.1007/BF01034476.
  5. Volkovsky AP, Rulkov NF. Experimental study of bifurcations at the threshold of stochastic synchronization. Sov. Tech. Phys. Lett. 1989;15(7):5–10 (in Russian).
  6. Pecora L, Carroll Т. Synchronization of chaotic systems. Phys. Rev. Let. 1990;64(8):821–824. DOI: 10.1103/PhysRevLett.64.821.
  7. Anishchenko VS, Postnov DE. The effect of capturing the base frequency of chaotic self-oscillations. Synchronization of strange attractors. Sov. Tech. Phys. Lett. 1988;14(6):569–573 (in Russian).
  8. Anishchenko VS, Vadivasova TE, Postnov DE, Safonova MA. Synchronization оf chaos. International Journal оf Bifurcation and Chaos. 1992;2(3):633–644. DOI: 10.1142/S0218127492000756.
  9. Anishchenko VS, Vadivasova TE, Postnov DE, Sosnovtseva ОМ, Wu CW, Chua LO. Dynamics оf the non-autonomous Chua's circuits. International Journal оf Bifurcation and Chaos. 1995;5(6):1525–1540. DOI: 10.1142/S0218127495001162.
  10. Anishchenko VS, Astakhov VV, Vadivasova TE, Sosnovtseva ОМ, Wu CW, Chua LO. Dynamics оf two coupled Chua’s circuits. International Journal оf Bifurcation and Chaos. 1995;5(6):1677–1699. DOI: 10.1142/S0218127495001241.
  11. Rulkov NF, Sushchik MM, Tsimring LS, Abarbanel HDI. Generalized synchronization of chaos in unidirectorally coupled chaotic systems. Phys. Rev. Е. 1995;51(2):980–994. DOI: 10.1103/PhysRevE.51.980.
  12. Kocarev L, Parlitz U. Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems. Phys. Rev. Lett. 1996;76(11):1816–1819. DOI: 10.1103/PhysRevLett.76.1816.
  13. Kuznetsov YI, Landa PS, Olkhovoy AF, Perminov SM. On the relation between the synchronization amplitude threshold and entropy in the stochastic self-oscillatory systems. Proc. Acad. Sci. USSR. 1985;281(2):291–294 (in Russian).
  14. Neimark YI, Landa PS. Stochastic and Chaotic Oscillations. Moscow: Nauka; 1987. 424 p. (in Russian).
  15. Anishchenko VS, Vadivasova TE, Kopeikin AS, Kurths J, Strelkova GI. Peculiarities of the relaxation to an invariant probability measure of nonhyperbolic chaotic attractors in the presence of noise. Phys. Rev. E. 2002;65(3):036306. DOI: 10.1103/PhysRevE.65.036206.
  16. Anishchenko VS, Vadivasova TE, Okrokvertskhov GA, Strelkova GI. Correlation analysis of dynamical chaos. Physica A. 2003;325(1–2):199–212. DOI: 10.1016/S0378-4371(03)00199-7.
Available online: