For citation:
Trubetskov D. I. Joseph Valentin Boussinesq, Diederik Johann Korteweg, Gustav de Vries and the KdV equation. Izvestiya VUZ. Applied Nonlinear Dynamics, 1995, vol. 3, iss. 2, pp. 111-113.
This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 0)
Language:
Russian
Article type:
Personalia
Joseph Valentin Boussinesq, Diederik Johann Korteweg, Gustav de Vries and the KdV equation
Autors:
Trubetskov Dmitriy Ivanovich, Saratov State University
Abstract:
-
Key words:
Reference:
- Miles J. The Korteweg-de Vries equation: a historical essay. J. Fluid Mech. 1981;106(1):131-147. DOI: 10.1017/S0022112081001559. Batchelor GK, Moffatt HK, editors. Modern Hydrodynamics. Successes and Problems. М.: Mir; 1984. 501 p.
- Fermi E, Pasta J, Ulam S. Studies of nonlinear problems. 1. Nonlinear Wave Motion. In: Newell AC, editor. Lectures in Applied Mathematics. Amer. Math. Soc. Providence, R.1.,1955/1974. Vol.15. P. 143-156.
- Zabusky NJ, Kruskal MD. Interaction of «solitons» in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 1965;15(6):240-243. DOI: 10.1103/PhysRevLett.15.240.
- Gardner CS, Greene JM, Kruskal MD, Miura RM. Method for solving the Korteveg - de Vries equation. Phys.Rev.Lett. 1967;19(19):1095-1097. DOI: 10.1103/PhysRevLett.19.1095.
- Zakharov VE, Manakov SV, Novikov SP, Pitaevskii LP. The Theory of Solitons: Inverse Problem Method. М.: Nauka; 1980. 319 p.
- Korpel А, Banerjee PP. A heuristic guide to nonlinear dispersive wave equations and soliton-type solutions. Proc. IEEE. 1984;72(9):1109-1130. DOI: 10.1109/PROC.1984.12992.
Received:
15.02.1995
Accepted:
16.08.1995
Published:
15.12.1995
Journal issue:
- 119 reads