ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Muhamedov A. M. Lorenz attractor in flows of simple shift. Izvestiya VUZ. Applied Nonlinear Dynamics, 2007, vol. 15, iss. 1, pp. 61-70. DOI: 10.18500/0869-6632-2007-15-1-61-70

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 165)
Article type: 

Lorenz attractor in flows of simple shift

Muhamedov Alferid Mavievich, "Kazan State Technical University"

In the frame of a model given before for simulation of chaotic dynamics of continuum medium the Lorenz attractor is represented. The simulation is given with the help of the structures that define the geometry of a fiber bundle associated with 3-dimensional regime of velocity pulsations. Lorenz dynamics appears as time dependence of pulsations along the lines of average flow.

Key words: 
  1. Mukhamedov AM. Turbulent models: problems and solutions. 17 IMACS Congress, Paper T4-1-103-0846.
  2. Mukhamedov AM. Towards a gauge theory of turbulence. Chaos, Solitons & Fractals. 2006;29:253–261. DOI: 10.1016/j.chaos.2005.11.003.
  3. Ruelle D, Takens F. On the nature of turbulence. Commun. Math. Phys. 1971;23:343–344. DOI: 10.1007/BF01893621.
  4. Babin AV, Vishik MI. Attractors of Evolution Equations. Moscow: Nauka; 1989. 296 p.
  5. Mandelbrot B. The fractal geometry of nature. San Francisco: Freeman; 1982.
  6. Benzi R, Paladin G, Parisi G, Vulpiani A. On the multifractal nature of fully developed turbulence and chaotic systems. J. Phys. A. 1984;17:3521–3531. DOI: 10.1088/0305-4470/17/18/021.
  7. Elnaschie MS. The Feynman path integrals and E-Infinity theory from the two-slit Gedanken experiment.International Journal of Nonlinear sciences and Numerical Simulations. 2005;6(4):335–342. DOI: 10.1515/IJNSNS.2005.6.4.335.
  8. Mukhamedov AM. On ensemble turbulent conditions in shear flows. Bulletin of KSTU named after A.N. Tupolev. 2003;3:36–40.
  9. Yudovich VI. Asymptotic behaviour of limit cycles in Lorenz’s system for large Rayleigh numbers. Manuscript no. 2611-78 deposited at VINITI; 31.07.78.
  10. Anishchenko VS. Complex Oscillations in Simple Systems. Moscow: Nauka; 1990. 312 p.
  11. Loitsyanskii LG. Mechanics of Liquids and Gases; 1987. 840 p.
Short text (in English):
(downloads: 62)